Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two structural configurations of the skeletal muscle calcium release channel

Abstract

Here we present the determination of the three-dimensional structure of the skeletal muscle Ca2+-release channel in an open state using electron cryomicroscopy and angular reconstitution. In contrast to our reconstruction of the channel in its closed state, the density map of the channel driven towards its open state, by the presence of Ca2+ and ryanodine, features a central opening in the transmembrane region—the likely passageway for Ca2+ ions from the sarcoplasmic reticulum to the cytosol. The opening of the channel is associated with a 4° rotation of its transmembrane region with respect to its cytoplasmic region, and with significant mass translocations within the entire cytoplasmic region of the channel tetramer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ebashi, S. & Endo, M. Calcium ion and muscle contraction. Biophys. Mol. Biol. 18, 123–183 (1968).

    Article  CAS  Google Scholar 

  2. Franzini-Armstrong, C. Studies of the triad.I. Structure of the junction in frog twitch fibers. J. Cell Biol. 47, 488–499 (1970).

    Article  CAS  Google Scholar 

  3. Saito, A., Inui, M., Radermacher, M., Frank, J. & Fleischer, S. Ultrastructure of the calcium release channel of sarcoplasmic reticulum. J. Cell Biol. 107, 211–219 (1988).

    Article  CAS  Google Scholar 

  4. Campbell, K., Knudson, C. & Imagawa, T. Identification and characterization of the high affinity [3H]-ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J. Biol. Chem. 262, 6460–6463 (1987).

    CAS  PubMed  Google Scholar 

  5. Inui, M., Saito, A. & Fleischer, S. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262, 1740–1747 (1987).

    CAS  PubMed  Google Scholar 

  6. Imagawa, T., Smith, J. & Coronado, R. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+ -permeable pore of theCa2+-release channel. J Biol. Chem. 262, 16636–16643 (1987).

    CAS  PubMed  Google Scholar 

  7. Lai, F.A., Erickson, H.P., Rousseau, E., Liu, Q.-Y. & Meissner, G. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331, 315–319 (1988).

    Article  CAS  Google Scholar 

  8. Lai, F.A., Misra, M. & Xu, L. The ryanodine receptor Ca2+ release channel complex of skeletal muscle sarcoplasmic reticulum: evidence for a cooperatively charged homotetramer. J. Biol. Chem. 264, 16776–16785 (1989).

    CAS  PubMed  Google Scholar 

  9. Takeshima, H. et al. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339, 439–445 (1989).

    Article  CAS  Google Scholar 

  10. Jayaraman, T. et al. FK506 binding protein associated with the calcium release channel (ryanodine receptor). J. Biol. Chem. 267, 9474–9477 (1992).

    CAS  PubMed  Google Scholar 

  11. Lu, X., Xu, L. & Meissner, G. Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor. J. Biol. Chem. 269, 6511–6516 (1994).

    CAS  PubMed  Google Scholar 

  12. Smith, J.S., Coronado, R. & Meissner, G. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. J. Gen. Physiol. 88, 573–588 (1986).

    Article  CAS  Google Scholar 

  13. Cifuentes, M.E., Ronjat, M. & Ikemoto, N. Polylysine induces a rapid Ca++ release from sarcoplasmic reticulum vesicles by mediation of its binding to the foot protein. Arch. Biochem. Biophys. 273, 554–561 (1989).

    Article  CAS  Google Scholar 

  14. Pessah, I.N., Stambuk, R.A. & Casida, J.E. Ca++ -activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg++, caffeine, and adenine nucleotides. Mol. Pharmacol. 31, 232–238 (1987).

    CAS  PubMed  Google Scholar 

  15. Chu, A., Diaz-Muñoz, M., Hawkes, M.J., Brush, K. & Hamilton, S.L. Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic calcium release channel. Mol. Pharmacol. 37, 735–741 (1990).

    CAS  PubMed  Google Scholar 

  16. Radermacher, M. et al. Cryo-electron microscopy and three-dimensional reconstruction of the calcium channel/ryanodine receptor from skeletal muscle. J.Cell Biol. 127, 411–423 (1994).

    Article  CAS  Google Scholar 

  17. Serysheva, I.I., Orlova, E.V., Chiu, W., Sherman, M.B., Hamilton, S.L. & van Heel, M. Electron cryomicroscopy and angular reconstitution to visualize the skeletal muscle calcium-release channel. Nature Struct. Biol. 2, 18–24 (1995).

    Article  CAS  Google Scholar 

  18. van Heel, M. Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 111–124 (1987).

    Article  CAS  Google Scholar 

  19. van Heel, M., Winkler, H., Orlova, E. & Schatz, M. Structural analysis of ice-embedded single particles. Scanning Microscopy Suppl. 6, 23–42 (1992).

    Google Scholar 

  20. Tinker, A. & Williams, A.J. Probing the structure of the conduction pathway of the sheep cardiac sarcoplasmic reticulum calcium-release channel with permanent and impermeant organic cations. J. Gen. Physiol. 102, 1107–1129 (1993).

    Article  CAS  Google Scholar 

  21. Tu, Q., Velez, P., Browick, M. & Fill, M. Streaming potentials reveal a short ryanodine-sensitive selectivity filter in cardiac Ca2+ release channel. Biophys. J. 67, 2280–2285 (1994).

    Article  CAS  Google Scholar 

  22. Tinker, A. & Williams, A.J. Measuring the length of the pore of the sheep cardiac sarcoplasmic reticulum calcium-release channel using related trimethylammonium ions as molecular calipers. Biophys. J. 68, 111–120 (1995).

    Article  CAS  Google Scholar 

  23. Zhang, Y., Chen, H.S. & Khanna, V.K. A mutation in the human ryanodine receptor gene associated with central core disease. Nature Genetics 5, 46–50 (1993).

    Article  CAS  Google Scholar 

  24. Fujii, J., Otsu, K. & Zorzoto, F. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448–451 (1991).

    Article  CAS  Google Scholar 

  25. Ikemoto, N., Antoniuu, B. & Meszaros, L.G. Rapid flow chemical quench studies of calcium release from isolated sarcoplasmic reticulum. J. Biol. Chem. 260, 14096–14100 (1985).

    CAS  PubMed  Google Scholar 

  26. Unwin, P.N.T. & Ennis, P.D. Calcium-mediated changes in gap junction structure: Evidence from the low angle X-ray pattern. J. Cell Biol. 97, 1459–1466 (1983).

    Article  CAS  Google Scholar 

  27. Unwin, P.N.T. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995).

    Article  CAS  Google Scholar 

  28. Flagg-Newton, J., Simpson, I. & Loewenstein, W.R. Permeability of the cell-to-cell membrane channels in mammalian cell junction. Science 205, 404–407 (1979).

    Article  CAS  Google Scholar 

  29. Schwarzmann, G., Wiegandt, H. & Rose, B. Diameter of the cell-to-cell junctional membrane channels as probed with neutral molecules. Science 213, 551–553 (1981).

    Article  CAS  Google Scholar 

  30. Loesser, K.E., Catellani, L. & Franzini-Armstrong, C. Disposition of junctional feet in muscles of invertebrates. J. Muscle Res. Cell Motil. 13, 161–173 (1992).

    Article  CAS  Google Scholar 

  31. Schatz, M., Orlova, E.V., Dube, P., Jäger, J. & van Heel, M. Structure of Lumbricus terrestris hemoglobin at 30 Å resolution determined using angular reconstitution. J. Struct. Biol. 114, 28–40 (1995).

    Article  CAS  Google Scholar 

  32. Hawkes, M.J., Diaz-Muñoz, M. & Hamilton, S.L. A procedure for purification of the ryanodine receptor from skeletal muscle. Memb. Biochem. 8, 133–145 (1989).

    Article  CAS  Google Scholar 

  33. Zhou, Z.H., Hardt, S., Wang, B., Sherman, M.B., Jakana, J. & Chiu, W. CTF determination of images of ice-embedded single particles using a graphics interface. J. Struct. Biol. 116, 216–222 (1996).

    Article  CAS  Google Scholar 

  34. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  Google Scholar 

  35. Dube, P., Tavares, P., Lurz, R. & van Heel, M. The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBOJ. 12, 1303–1309 (1993).

    Article  CAS  Google Scholar 

  36. van Heel, M. Classification of very large electron microscopical image data sets. Optik 82, 114–126 (1989).

    Google Scholar 

  37. Harauz, G. & van Heel, M. Exact filters for general geometry three dimensional reconstruction. Optik 73, 146–156 (1986).

    Google Scholar 

  38. van Heel, M. & Harauz, G. Resolution criteria for three dimensional reconstructions. Optik 73, 119–122 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlova, E., Serysheva, I., van Heel, M. et al. Two structural configurations of the skeletal muscle calcium release channel. Nat Struct Mol Biol 3, 547–552 (1996). https://doi.org/10.1038/nsb0696-547

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0696-547

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing