Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural determinants of CCR5 recognition and HIV-1 blockade in RANTES

Abstract

Certain chemokines act as natural antagonists of human immunodeficiency virus (HIV) by blocking key viral coreceptors, such as CCR5 and CXCR4, on the surface of susceptible cells. Elucidating the structural determinants of the receptor-binding and HIV-inhibitory functions of these chemokines is essential for the rational design of derivative molecules of therapeutic value. Here, we identify the structural determinants of CCR5 recognition and antiviral activity of the CC chemokine RANTES, showing that critical residues form a solvent-exposed hydrophobic patch on the surface of the molecule. Moreover, we demonstrate that the biological function is critically dependent on dimerization, resulting in the exposure of a large (180 Å2), continuous hydrophobic surface. Relevant to the development of novel therapeutic approaches, we designed a retroinverted RANTES peptide mimetic that maintained both HIV- and chemotaxis-antagonistic functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peptide-scanning analysis of RANTES.
Figure 2: Relative anti-HIV activity of recombinant RANTES analogs.
Figure 3: Schematic representations of the solution structure of RANTES.
Figure 4: Experimental validation of the CCR5-interactive site model.
Figure 5: Biological role of dimerization.

Similar content being viewed by others

References

  1. Baggiolini, M., Dewald, B. & Moser, B. Ann. Rev. Immunol. 55, 97–179 (1994).

    CAS  Google Scholar 

  2. Schall, T.J. & Bacon, K.B. Curr. Opin. Immunol. 6, 865–873 (1994).

    Article  CAS  Google Scholar 

  3. Cocchi, F. et al. Science 270, 1811–1815 (1995).

    Article  CAS  Google Scholar 

  4. Berger, E.A., Murphy, P.M. & Farber, J.M. Ann. Rev. Immunol. 17, 657–700 (1999).

    Article  CAS  Google Scholar 

  5. Lusso, P. Virology 273, 228–240 (2000).

    Article  CAS  Google Scholar 

  6. Skelton, N.J., Aspiras, F., Ogez, J. & Schall, T.J. Biochemistry 34, 5329–5342 (1995).

    Article  CAS  Google Scholar 

  7. Chung, C., Cooke, R.M., Proudfoot, A.E. & Wells, T.N.C. Biochemistry 34, 9307–9314 (1995).

    Article  CAS  Google Scholar 

  8. Siciliano, S.J. et al. Proc. Natl. Acad. Sci. USA 91, 1214–1218 (1994).

    Article  CAS  Google Scholar 

  9. Clark-Lewis, I. et al. J. Leuk. Biol. 57, 703–711 (1995).

    Article  CAS  Google Scholar 

  10. Gong, J.-H., Uguccioni, M., Dewald, B., Baggiolini, M. & Clark-Lewis, I. J. Biol. Chem. 271, 10521–10527 (1996).

    Article  CAS  Google Scholar 

  11. Proudfoot, A.E. et al. J. Biol. Chem. 271, 2599–2605 (1996).

    Article  CAS  Google Scholar 

  12. Arenzana-Seisdedos, F. et al. Nature 383, 400 (1996).

  13. Clark-Lewis, I., Dewald, B., Loetscher, M., Moser, B. & Baggiolini, M. J. Biol. Chem. 269, 16075–16081 (1994).

    CAS  PubMed  Google Scholar 

  14. Schraufstätter, I.U., Ma, M., Oades, Z.G., Barritt, D.S. & Cochrane, C.G. J. Biol. Chem. 270, 10428–10431 (1995).

    Article  Google Scholar 

  15. Lowman, H.B. et al. J. Biol. Chem. 271, 14344–14352 (1996).

    Article  CAS  Google Scholar 

  16. Pakianathan, D.R., Kuta, E.G., Artis, D.R., Skelton, N.J. & Hebert, C.A. Biochemistry 36, 9642–8648 (1997).

    Article  CAS  Google Scholar 

  17. Crump, M.P. et al. EMBO J. 16, 6996–7007 (1997).

    Article  CAS  Google Scholar 

  18. Hemmerich, S. et al. Biochemistry 38, 13013–13025 (1999).

    Article  CAS  Google Scholar 

  19. Laurence, J.S., Blanpain, C., Burgner, J.W., Parmentier, M. & LiWang, P.J. Biochemistry 39, 3401–3409 (2000).

    Article  CAS  Google Scholar 

  20. Cocchi, F. et al. Nature Med. 2, 1244–1247 (1996).

    Article  CAS  Google Scholar 

  21. Farzan, M. et al. J. Biol. Chem. 272, 6854–6857 (1997).

    Article  CAS  Google Scholar 

  22. Chorev, M. & Goodman, M. Trends Biotechnol. 13, 438–445 (1995).

    Article  CAS  Google Scholar 

  23. Ferrer, M. et al. Nature Struct. Biol. 6, 953–960 (1999).

    Article  CAS  Google Scholar 

  24. Romano, C., Yang, W.L. & O' Malley, K.L. J. Biol. Chem. 271, 28612–28616 (1996).

    Article  CAS  Google Scholar 

  25. Jordan, B.A. & Devi, L.A. Nature 399, 697–700 (1999).

    Article  CAS  Google Scholar 

  26. Mellado, M., Rodríguez-Frade, J.M., Vila-Coro, A.J., De Ana A.M. & Martínez, A.C. Nature 400, 723–724 (1999).

    Article  CAS  Google Scholar 

  27. Ellman, G.L. Arch. Biochem. Biophys. 82, 70–77 (1959).

    Article  CAS  Google Scholar 

  28. Polo, S., et al. Eur. J. Immunol. 30, 3190–3198, 2000.

    Article  CAS  Google Scholar 

  29. Nichols, A.J., Sharp, K. & Honig, B. Proteins 11, 281–296 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D.R. Littman for CCR5-transfected U87 cells (Ghost-CD4 cells), E.A. Berger for vaccinia virus vectors, E. Frittoli for technical assistance and S. Laus for editorial assistance. This work was supported by grants from the ISS AIDS Program, Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lusso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nardese, V., Longhi, R., Polo, S. et al. Structural determinants of CCR5 recognition and HIV-1 blockade in RANTES. Nat Struct Mol Biol 8, 611–615 (2001). https://doi.org/10.1038/89653

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/89653

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing