Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alternating arginine-modulated substrate specificity in an engineered tyrosine aminotransferase

An Erratum to this article was published on 01 August 1995

Abstract

Mutation of six residues of Escherichia coli aspartate aminotransferase results in substantial acquisition of the transamination properties of tyrosine aminotransferase without loss of aspartate transaminase activity. X-ray crystallographic analysis of key inhibitor complexes of the hexamutant reveals the structural basis for this substrate selectivity. It appears that tyrosine aminotransferase achieves nearly equal affinities for a wide range of amino acids by an unusual conformational switch. An active-site arginine residue either shifts its position to electrostatically interact with charged substrates or moves aside to allow access of aromatic ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bocanegra, J.A., Scrutton, N.S. & Perham, R.N. Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. Biochemistry. 32, 2737–2740. 1993.

    Article  CAS  Google Scholar 

  2. Wilks, H.M. et al. Design of a specific phenyllactate dehydrogenase by peptide loop exchange on the Bacillus stearothermophilus lactate dehydrogenase framework. Biochemistry 31 7802–7806. 1992.

    Article  CAS  Google Scholar 

  3. Wells, J.A., Cunningham, C., Graycer, T.P & Estell, D.A. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc. natn. Acad. Sci. U.S.A. 84, 5167–5171. 1987.

    Article  CAS  Google Scholar 

  4. Malcolm, B.A. & Kirsch, J.F. Site-directed mutagenesis of aspartate aminotransferase from Escherichia coli. Biochem. biophys. Res. Commun. 132, 915–921. 1985.

    Article  CAS  Google Scholar 

  5. Kuramitsu, S., Okuno, S., Ogawa, T., Ogawa, H. & Kagamiyama, H. Aspartate aminotransferase of Escherichia coli: nucleotide sequence of the aspC gene. J. Biochem. (Tokyo) 97, 1259–1262. 1985.

    Article  CAS  Google Scholar 

  6. Kuramitsu, S., Inoue, K., Ogawa, T., Ogawa, H. & Kagamiyama, H. Aromatic amino acid aminotransferase of Escherichia coli: nucleotide sequence of the tyrB gene. Biochem. biophys. Res. Commun. 133, 134–139. 1985.

    Article  CAS  Google Scholar 

  7. Fotheringham, I.G. et al. The cloning and sequence analysis of the aspC and tyrB genes from Escherichia coli K12. Biochem. J. 234, 593–604. 1986.

    Article  CAS  Google Scholar 

  8. Powell, J.T. & Morrison, J.F. The purification and properties of the aspartate aminotransferase and aromatic amino acid aminotransferase from Escherichia coli. Eur. J. Biochem. 87, 391–400. 1978.

    Article  CAS  Google Scholar 

  9. Hayashi, H., Inoue, K., Nagata, T., Kuramitsu, S. & Kagamiyama, H. Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase. Biochemistry. 32, 12229–12239. 1993.

    Article  CAS  Google Scholar 

  10. Kirsch, J.F. & Onuffer, J.J. Redesign of aspartate aminotransferase specificity to that of tyrosine aminotransferase. in Biochemistry of Vitamin B6 and PQQ (eds, Bossa, F. et. al) 37–41. (Birkhäuser Verlag, Basel; 1994).

    Chapter  Google Scholar 

  11. Jäger, J., Moser, M., Sauder, U. & Jansonius, J.N. Crystal structure of Escherichia coliaspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms. J. molec. Biol. 239, 285–305. 1994.

    Article  Google Scholar 

  12. Seville, M., Vincent, M.G. & Hahn, K. Modeling the three-dimensional structures of bacterial aminotransferases. Biochemistry. 27, 8344–8349. 1988.

    Article  CAS  Google Scholar 

  13. Jäger, J., Solmajer, T. & Jansonius, J.N. Computational approach towards the three-dimensional structure of Escherichia colityrosine aminotransferase. FEBS Letts. 306, 234–238. 1992.

    Article  Google Scholar 

  14. Jansonius, J.N. & Vincent, M.G. Structural basis for catalysis of aspartate aminotransferase. in Biological Macromolecules and Assemblies, vol. 3 (eds. Jurnak, F.A. & McPherson, A.) 187–285 (Wiley, New York; 1987.)

    Google Scholar 

  15. Hayashi, H., Kuramitsu, S. & Kagamiyama, H. Replacement of an interdomain residue Val 39 of Escherichia coli aspartate aminotransferase affects the catalytic competence without altering the substrate specificity of the enzyme. J. Biochem (Tokyo). 109, 699–704. 1991.

    Article  CAS  Google Scholar 

  16. Koehler, E. et al. Significant improvement to the catalytic properties of aspartate aminotransferase: role of hydrophobic and charged residues in the substrate binding pocket. Biochemistry. 33, 90–97. 1994.

    Article  CAS  Google Scholar 

  17. Jäger, J., Pauptit, R.A., Sauder, U. & Jansonius, J.N. Three-dimensional structure of a mutant E. coli aspartate aminotransferase with increased enzymic activity. Prot. Engng. 7, 605–612. 1994.

    Article  Google Scholar 

  18. Malashkevich, V.N., Toney, M.D. & Jansonius, J.N. Crystal structures of true enzymatic reaction intermediates: aspartate and glutamate ketimines in aspartate aminotransferase. Biochemistry. 32, 13451–13462. 1993.

    Article  CAS  Google Scholar 

  19. Cronin, C.N. & Kirsch, J.F. Role of Arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis. Biochemistry. 27, 4572–4579. (1988).

    Article  CAS  Google Scholar 

  20. Hayashi, H., Kuramitsu, S., Inoue, Y., Morino, Y. & Kagamiyama, H. [Arg 292 → Val] or [Arg 292 → Leu] mutation enhances the reactivity of Escherichia coliaspartate aminotransferase with aromatic amino acids. Biochem. biophys. Res. Commun. 159, 337–342. (1989).

    Article  CAS  Google Scholar 

  21. Hedstrom, L., Szilagyi, L. & Rutter, W.J. Converting trypsin to chymotrypsin: the role of surface loops. Science 255, 1249–1253. (1992).

    Article  CAS  Google Scholar 

  22. Messerschmidt, A. & Pflugrath, J.M. Crystal orientation and X-ray pattern prediction routines for area detector diffractometer. J. appl. Crystallogr. 20, 306–319. (1987).

    Article  CAS  Google Scholar 

  23. Kabsch, W. Evaluation of single crystal X-ray diffraction from a position sensitive detector. J. appl. Crystallogr. 21, 916–924. (1988).

    Article  CAS  Google Scholar 

  24. CCP4, SERC U.K.Collaborative Project (Daresbury Laboratory, U.K.; 1979.)

  25. Jones, T.A. A graphic model building and refinement system for macromolecules. J. appl. Crystallogr. 11, 268–272. (1978).

    Article  CAS  Google Scholar 

  26. Tronrud, D.E., Ten Eyck, L.F. & Matthews, B.W. An efficient general-purpose least-squares refinement program for macromolecular structures. Acta crystallogr. A43, 489–501. (1987).

    Article  CAS  Google Scholar 

  27. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr A47, 110–119. (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malashkevich, V., Onuffer, J., Kirsch, J. et al. Alternating arginine-modulated substrate specificity in an engineered tyrosine aminotransferase. Nat Struct Mol Biol 2, 548–553 (1995). https://doi.org/10.1038/nsb0795-548

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0795-548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing