Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A ligand-gated, hinged loop rearrangement opens a channel to a buried artificial protein cavity

Abstract

Conformational changes that gate the access of substrates or ligands to an active site are important features of enzyme function. In this report, we describe an unusual example of a structural rearrangement near a buried artificial cavity in cytochrome cperoxidase that occurs on binding protonated benzimidazole. A hinged main-chain rotation at two residues (Pro 190 and Asn 195) results in a surface loop rearrangement that opens a large solvent-accessible channel for the entry of ligands to an otherwise inaccessible binding site. The trapping of this alternate conformational state provides a unique view of the extent to which protein dynamics can allow small molecule penetration into buried protein cavities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Li, L.Y., Falzone, C.J., Wright, P.E. & Benkovic, S.J. Functional role of a mobile loop of Escherichia coli dihydrofolate reductase in transition-state stabilization. Biochemistry 31, 7826–7833 (1992).

    Article  CAS  Google Scholar 

  2. Sampson, N.S. & Knowles, J.R. Segmental movement - definition of the structural requirements for loop closure in catalysis by triosephosphate isomerase. Biochemistry 31, 8482–8487 (1992).

    Article  CAS  Google Scholar 

  3. Li, H. & Poulos, T.L. Modeling protein-substrate interactions in the heme domain of cytochrome P450BM-3. Acta Cryst. D51, 21–32 (1995).

    CAS  Google Scholar 

  4. Nobbs, C.L. Heme and Hemoproteins 1, 143–147 (Academic Press, New York, 1966).

    Google Scholar 

  5. Jaskolski, M. et al. Structure at 2.5 Å resolution of chemically synthesized human immunodeficiency virus type I protease complexed with a hydroxyethylene-based inhibitor. Biochemistry 30, 1600–1609 (1991).

    Article  CAS  Google Scholar 

  6. Rao, J.K.M., Erickson, J.W. & Wlodawer, A. Structural and evolutionary relationship between retroviral and eucaryotic aspartic proteinases. Biochemistry 30, 4663–4671 (1991).

    Article  CAS  Google Scholar 

  7. Koshland, D.E. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 44, 98–104 (1958).

    Article  CAS  Google Scholar 

  8. Herschlag, D. The role of induced fit and conformational changes of enzymes in specificity and catalysis. Bioorg. Chem. 16, 62–96 (1988).

    Article  CAS  Google Scholar 

  9. Williams, J.C. & McDermott, A.E. Dynamics of the flexible loop of triosephosphate isomerase: the loop motion is not ligand gated. Biochemistry 34, 8309–9319 (1995).

    Article  CAS  Google Scholar 

  10. Falzone, C.J., Wright, P.E. & Benkovic, S.J. Dynamics of a flexible loop in dihydrofolate reductase from Escherichia coli and its implication for catalysis Biochemistry. 33, 439–442 (1994).

    Article  CAS  Google Scholar 

  11. Young, R.D. et al. Time- and temperature dependence of large-scale conformational transitions in myoglobin. Chemical Physics 158, 315–327 (1991).

    Article  CAS  Google Scholar 

  12. Frauenfelder, H. & Wolynes, P.G. Rate theories and puzzles of hemeprotein kinetics. Science 229, 337–345 (1985).

    Article  CAS  Google Scholar 

  13. Frauenfelder, H., Sligar, S.G. & Wolynes, P.G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  CAS  Google Scholar 

  14. Beece, D. et al. Solvent viscosity and protein dynamics. Biochemistry 19, 5147–5157 (1980).

    Article  CAS  Google Scholar 

  15. Eriksson, A.E. et al. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255, 178–183 (1992).

    Article  CAS  Google Scholar 

  16. Eriksson, A.E., Baase, W.A., Wozniak, J.A. & Matthews, B.W. A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature 355, 371–373 (1992).

    Article  CAS  Google Scholar 

  17. Eriksson, A.E., Baase, W.A. & Matthews, B.W. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4-lysozyme have different structural and thermodynamic consequences. J. Mol. Biol. 229, 747–769 (1993).

    Article  CAS  Google Scholar 

  18. Fitzgerald, M.M., Churchill, M.J., McRee, D.E. & Goodin, D.B. Small molecule binding to an artificially created cavity at the active site of cytochrome c peroxidase. Biochemistry 33, 3807–3818 (1994).

    Article  CAS  Google Scholar 

  19. Erman, J.E., Vitello, L.B., Mauro, J.M. & Kraut, J. Detection of an oxyferryl porphyrin π-cation-radical intermediate in the reaction between hydrogen peroxide and a mutant yeast cytochrome c peroxidase. Evidence for tryptophan-191 involvement in the radical site of compound I. Biochemistry 28, 7992–5 (1989).

    Article  CAS  Google Scholar 

  20. Scholes, C.P. et al. Recent ENDOR and pulsed electron paramagnetic resonance studies of cytochrome c peroxidase-compound I and its site-directed mutants Isr. J. Chem 29, 85–92 (1989).

    CAS  Google Scholar 

  21. Sivaraja, M., Goodin, D.B., Smith, M. & Hoffman, B.M. Identification by ENDOR of Trp191 as the free-radical site in cytochrome c peroxidase compound ES. Science 245, 738–740 (1989).

    Article  CAS  Google Scholar 

  22. Houseman, A.L.P., Doan, P.E., Goodin, D.B. & Hoffman, B.M. Comprehensive explanation of the anomalous EPR spectra of wild-type and mutant cytochrome-c peroxidase compound-ES. Biochemistry 32, 4430–4443 (1993).

    Article  CAS  Google Scholar 

  23. Huyett, J.E. et al. Compound ES of cytochrome c peroxidase contains a Trp π-cation radical: characterization by CW and pulsed Q-band ENDOR spectroscopy. J. Am. Chem. Soc. 117, 9033–9041 (1995).

    Article  CAS  Google Scholar 

  24. Jensen, G.M., Goodin, D.B. & Bunte, S.W. Density functional and MP2 calculations of spin densities of oxidized 3-methyl indole: models for tryptophan radicals. J. Phys. Chem. 100, 954–959 (1996).

    Article  CAS  Google Scholar 

  25. Miller, M.A., Han, G.W. & Kraut, J. A Cation binding motif stabilizes the compound I radical of cytochrome c peroxidase. Proc. Natl. Acad. Sci. USA 91, 11118–11122 (1994).

    Article  CAS  Google Scholar 

  26. Fitzgerald, M.M., Trester, M.L., Jensen, G.M., McRee, D.E. & Goodin, D.B. The role of aspartate-235 in the binding of cations to an artificial cavity at the radical site of cytochrome c peroxidase. Protein Science 4, 1844–1850 (1995).

    Article  CAS  Google Scholar 

  27. Richardson, J.S. & Richardson, D.C. Amino acid preferences for specific locations at the ends of α helices. Science 240, 1648–1652 (1988).

    Article  CAS  Google Scholar 

  28. Edwards, S.L., Kraut, J. & Poulos, T.L. Crystal structure of nitric oxide inhibited cytochrome c peroxidase. Biochemistry 27, 8074–8175 (1988).

    Article  CAS  Google Scholar 

  29. Picot, D., Loll, P.J. & Garavito, R.M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367, 243–249 (1994).

    Article  CAS  Google Scholar 

  30. Koide, S., Dyson, H.J. & Wright, P.E. Characterization of a folding intermediate of apoplastocyanin trapped by proline isomerization. Biochemistry 32, 12299–12310 (1993).

    Article  CAS  Google Scholar 

  31. McRee, D.E. A Visual protein crystallographic software system for X11/Xview. J. Mol. Graphics 10, 44–46 (1992).

    Article  Google Scholar 

  32. Brünger, A.T. & Karplus, M. Crystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  33. Connolly, M.L. Solvent accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, M., Musah, R., McRee, D. et al. A ligand-gated, hinged loop rearrangement opens a channel to a buried artificial protein cavity. Nat Struct Mol Biol 3, 626–631 (1996). https://doi.org/10.1038/nsb0796-626

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0796-626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing