Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate-assisted catalysis in cytochrome P450eryF

Abstract

A highly conserved threonine in the active site of cytochromes P450 has been proposed to participate in O2 binding and cleavage. Cytochrome P450eryF is unusual in having alanine in place of this threonine and an ordered active site water molecule (Wat 519) which is hydrogen bonded to the substrate 5-hydroxyl group and is in position to operate as an acid catalyst required for cleaving dioxygen. To asses the role of this alanine residue and Wat 519 in catalysis, two mutant forms of P450eryF (Ala→Ser, Ala→Thr) and a substrate analogue lacking a 5-hydroxyl group were examined using kinetic, spectral and crystallographic techniques. In each case decreased catalytic activity was correlated with a loss or repositioning of Wat 519. These findings suggest that P450eryF utilizes the substrate to assist in the acid-catalysed dioxygen bond cleavage reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Raag, R. & Poulos, T.L. X-ray crystallographic studies of P450cam; factors controlling substrate metabolism in Frontiers in Biotransformations, Vol 7: 1–43 (K. Ruckpaul and H. Rein, eds.) 1–43 (AkademieVerlag, 1992).

    Google Scholar 

  2. Poulos, T.L., Finzel, B.C. & Howard, A.J. Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 25, 5314–5322 (1986).

    Article  CAS  Google Scholar 

  3. Poulos, T.L., Finzel, B.C. & Howard, A.J. High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol. 195, 687–700 (1987).

    Article  CAS  Google Scholar 

  4. Nelson, D.R. & Strobel, H.W. Secondary structure prediction of 52 membrane-bound cytochromes P450 shows a strong structural similarity to P450cam. Biochemistry 28, 656–660 (1989).

    Article  CAS  Google Scholar 

  5. Matinis, S.A., Atkins, W.M., Stayton, P.S. & Sligar, S.G. A conserved residue of P450 involved in haem-oxygen stability and activation. J. Am. Chem. Soc. 111, 9252–9253 (1989).

    Article  Google Scholar 

  6. Imai, M. et al. Uncoupling the cytochrome P450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: a possible role of hydroxy amino acid in oxygen activation. Proc. Natl. Acad. Sci. USA 86, 7823–7827 (1989).

    Article  CAS  Google Scholar 

  7. Ravichandran, K.G., Boodupalli, S.S., Hasemann, C.A., Peterson, J.A. & Deisenhofer, J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. Science 261, 731–736 (1993).

    Article  CAS  Google Scholar 

  8. Li, H. & Poulos, T.L. Modeling protein-substrate interactions in the heme domain of cytochrome P450BM-3 . Acta Crystallogr. Sect. D D51, 21–32 (1995).

    Article  CAS  Google Scholar 

  9. Haseman, C.A., Ravichandran, K.G., Peterson, J.A. & Deisenhofer, J. Crystal structure and refinement of cytochrome P450terp at 2.3 Å resolution. J. Mol. Biol. 236, 1169–1185 (1994).

    Article  Google Scholar 

  10. Raag, R., Martinis, S.A., Sligar, S.G. & Poulos, T.L. Crystal structure of the cytochrome P-450cam acive site mutant Thr252Ala. Biochemistry 20, 11420–11429 (1991).

    Article  Google Scholar 

  11. Yeom, H., Sligar, S.G., Li, H., Poulos, T.L. & Fulco, A.J. The role of Thr268 in oxygen activation of cytochrome P450BM3. Biochemistry 34, 14733–14740 (1995).

    Article  CAS  Google Scholar 

  12. Nebert, D.W. et al. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA 8, 1–13 (1989).

    Article  CAS  Google Scholar 

  13. Andersen, J.F. & Hutchinson, C.R. Characterization of Saccharopolyspora erythaea cytochrome P450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase. J. Bacteriol. 174, 725–735 (1992).

    Article  CAS  Google Scholar 

  14. Cupp-Vickery, J.R. & Poulos, T.L. Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Nature Struc. Bio. 2, 144–153 (1995).

    Article  CAS  Google Scholar 

  15. Cupp-Vickery, J.R., Li, H. & Poulos, T.L. Preliminary crystallographic analysis of an enzyme involved in erythromycin biosynthesis: cytochrome P450eryF. Proteins 20, 197–201 (1994).

    Article  CAS  Google Scholar 

  16. Kimata,Y., Shimada,H., Hirose,T. & Ishimura,Y. Role of Thr-252 in cytochrome P450cam: a study with unnatural amino acid mutagenesis. Biochem. Biophys. Res. Commun, 208, 96–102 (1995).

    Article  CAS  Google Scholar 

  17. Howard, A.J. et al. The use of an imagining proportional counter in macromolecular crystallography. J. Appl. Crystallogr. 20, 383–387.

    Article  CAS  Google Scholar 

  18. Brünger, A.T. X-PLOR Version 3.1. A system for X-ray crystallography and NMR. (New Haven, Yale University Press; 1992).

    Google Scholar 

  19. Cambillau, C. & Horjales, E. TOM: a FRODO subpackage for protein-ligand fitting with interactive energy minimization. J. Molec. Graphics 5, 174–177 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cupp-Vickery, J., Han, O., Hutchinson, C. et al. Substrate-assisted catalysis in cytochrome P450eryF. Nat Struct Mol Biol 3, 632–637 (1996). https://doi.org/10.1038/nsb0796-632

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0796-632

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing