Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibitory conformation of the reactive loop of α1-antitrypsin

Abstract

The reactive site loop of the serpin family of serine proteinase inhibitors is flexible and can adopt a number of diverse conformations. A 2.9 Å resolution structure of α1-antitrypsin—the principal proteinase inhibitor in human plasma—shows the loop in a stable canonical conformation matching that found in all other families of serine proteinase inhibitors. This unexpected finding in the absence of loop insertion into the body of the molecule favours a two-stage mechanism of inhibition and provides a model for the heparin activation of antithrombin. The β-pleated strand conformation of the loop also accounts for the polymerization of the serpins in disease and for their association with other β-sheet structures, most notably the β-amyloid of Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Loebermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. Human α1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J. Mol. Biol. 177, 531–556 (1984).

    Article  CAS  Google Scholar 

  2. Huber, R. & Carrell, R.W. Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins. Biochemistry 28, 8951–8966 (1989).

    Article  CAS  Google Scholar 

  3. Potempa, J., Korzus, E. & Travis, J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J. Biol. Chem. 269, 15957–15960 (1994).

    CAS  PubMed  Google Scholar 

  4. Stein, P.E. et al. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347, 99–102 (1990).

    Article  CAS  Google Scholar 

  5. Mottonen, J. et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature 355, 270–273 (1992).

    Article  CAS  Google Scholar 

  6. Carrell, R.W., Stein, P.E., Fermi, G. & Wardell, M.R. Biological implications of a 3Å structure of dimeric antithrombin. Structure 2, 257–270 (1994).

    Article  CAS  Google Scholar 

  7. Wei, A., Rubin, H., Cooperman, B.S. & Christianson, D.W. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory loop. Nature Struct. Biol. 1, 251–258 (1994).

    Article  CAS  Google Scholar 

  8. Schreuder, H.A. et al. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature Struct. Biol. 1, 48–54 (1994).

    Article  CAS  Google Scholar 

  9. Wright, H.T. & Scarsdale, J.N. Structural basis for serpin inhibitor activity. Proteins 22, 210–225 (1995).

    Article  CAS  Google Scholar 

  10. Lomas, D.A., Evans, D.L., Stone, S.R., Chang, W.-S.W. & Carrell, R.W. The effect of the Z mutation on the physical and inhibitory properties of α1-antitrypsin. Biochemistry 32, 500–508 (1993).

    Article  CAS  Google Scholar 

  11. Mast, A.E., Enghild, J.J. & Salvesen, G. Conformation of the reactive site loop of α1-proteinase inhibitor probed by limited proteolysis. Biochemistry 31, 2720–2728 (1992).

    Article  CAS  Google Scholar 

  12. Kwon, K.-S., Kim, J., Shin, H.S. & Yu, M.-H. Single amino acid substitutions of α1-antitrypsin that confer enhancement in thermal stability. J. Biol. Chem. 269, 9627–9631 (1994).

    CAS  PubMed  Google Scholar 

  13. Sidhar, S.K., Lomas, D.A., Carrell, R.W. & Foreman, R.C. Mutations which impede loop/sheet polymerisation enhance the secretion of human α1-antitrypsin deficiency variants. J. Biol. Chem. 270, 8393–8396 (1995).

    Article  CAS  Google Scholar 

  14. Song, H.K., Lee, K.N., Kwon, K.-S., Yu, M.-H. & Suh, S.W. Crystal structure of an uncleaved α1-antitrypsin reveals the conformation of its inhibitory reactive loop. FEBS Lett. 377, 150–154 (1995).

    Article  CAS  Google Scholar 

  15. Bode, W. & Huber, R. Ligand binding: proteinase-protein inhibitor interactions. Curr. Op. Struct. Biol. 1, 45–52 (1991).

    Article  CAS  Google Scholar 

  16. Wilczynska, M., Fa, M., Ohlsson, P.-I. & Ny, T. The inhibition mechanism of serpins. Evidence that the mobile reactive centre loop is cleaved in the native protease-inhibitor complex. J. Biol. Chem. 270, 29652–29655 (1995).

    Article  CAS  Google Scholar 

  17. Shore, J.D. et al. A fluorescent probe study of plasminogen activator inhibitor 1: Evidence for reactive center loop insertion and its role in the inhibitory mechanism. J. Biol. Chem. 270, 5395–5398 (1995).

    Article  CAS  Google Scholar 

  18. Engh, R., Huber, R., Bode, W. & Schulze, A.J. Divining the serpin inhibition mechanism: a suicide substrate ‘spring’? Trends in Biotech. 13, 503–510 (1995).

    Article  CAS  Google Scholar 

  19. Olson, S.T. & Björk, I. Thromin, Structure and Function (eds. Berliner, LJ.) 159–217 (Plenum Press, 1992).

    Google Scholar 

  20. Gettins, P.G.W. et al. Transmission of conformational change from the heparin-binding site to the reactive centre of antithrombin. Biochemistry 32, 8385–8389 (1993).

    Article  CAS  Google Scholar 

  21. van Boeckel, C.A.A., Grootenhuis, P.D.J. & Visser, A. A mechanism for heparin-induced potentiation of antithrombin III. Nature Struct. Biol. 1, 423–425 (1994).

    Article  CAS  Google Scholar 

  22. Owen, M.C., Brennan, S.O., Lewis, J.H. & Carrell, R.W. Mutation of antitrypsin to antithrombin. α1-antitrypsin Pittsburgh (358 Met to Arg), a fatal bleeding disorder. N. Eng. J. Med. 309, 694–698 (1983).

    Article  CAS  Google Scholar 

  23. Jordan, R.E., Nelson, R.M., Kilpatrick, J., Newgren, J.O., Esmon, P.C. & Fournel, M.A. Inactivation of human antithrombin by neutrophil elastase. Kinetics of the heparin-dependent reaction. J. Biol. Chem. 264, 10493–10500 (1989).

    CAS  PubMed  Google Scholar 

  24. Eriksson, S., Carlson, J. & Velez, R. Risk of cirrhosis and primary liver cancer in alpha1-antitrypsin deficiency. N. Eng. J. Med. 314, 736–739 (1986).

    Article  CAS  Google Scholar 

  25. Lomas, D.A., Evans, D.L., Finch, J.T. & Carrell, R.W. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 357, 605–607 (1992).

    Article  CAS  Google Scholar 

  26. Lomas, D.A., Finch, J.T., Seyama, K., Nukiwa, T. & Carrell, R.W. α1-antitrypsin Siiyama (Ser53→Phe); further evidence for intracellular loop-sheet polymerisation. J. Biol. Chem. 268, 15333–15335 (1993).

    CAS  PubMed  Google Scholar 

  27. Lomas, D.A. et al. Alpha1-antitrypsin Mmalton (52Phe deleted) forms loop-sheet polymers in vivo: evidence for the C sheet mechanism of polymerisation. J. Biol. Chem. 270, 16864–16870 (1995).

    Article  CAS  Google Scholar 

  28. Ma, J., Yee, A., Brewer jr., H.B. & Potter, H. Amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 372, 92–94 (1994).

    Article  CAS  Google Scholar 

  29. Fraser, P.E., Nguyen, J.T., McLachlan, D.R., Abraham, C.R. & Kirschner, D.A. α1-antichymotrypsin binding to Alzheimer A beta peptides is sequence specific and induces fibril disaggregation in vitro. J. Neurochem. 61, 298–305 (1993).

    Article  CAS  Google Scholar 

  30. Janciauskiene, S., Eriksson, S. & Wright, H.T. A specific structural interaction of Alzheimer's peptide Aβ1-42 with α1-antichymotrypsin stimulates amyloid fibril formation. Nature Struct. Biol. 3, 668–671 (1996).

    Article  CAS  Google Scholar 

  31. Hopkins, P.C.R., Carrell, R.W. & Stone, S.R. Effects of mutations in the hinge region of serpins. Biochemistry 32, 7650–7657 (1993).

    Article  CAS  Google Scholar 

  32. Leslie, A.W.G. Recent changes to the MOSFLM package for processing film and image data. In Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography (Daresbury Laboratory, Warrington, UK, 1992).

    Google Scholar 

  33. Colloborative Computational Project Number 4. The CCP4 Suite : programs for protein crystallography. Acta Crystallogr. D50, (1994).

  34. Navaza, J. AMoRe : an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994).

    Article  Google Scholar 

  35. Brünger, A.T. XPLOR Version 3.1 Manual (Yale Univ., USA, 1993).

    Google Scholar 

  36. Abrahams, J.P. Likelihood-weighted real space restraints for refinement at low resolution. In Macromolecular Refinement, Proceedings of the CCP4 Study Weekend In the press (Daresbury Laboratory, Warrington, UK, 1996).

    Google Scholar 

  37. Tronrud, D.E., Ten Eyck, L.F. & Matthews, B.W. An efficient general purpose least-squares refinement program for macromolecular structure. Acta Crystallogr. A43, 489–501 (1992).

    Article  Google Scholar 

  38. Kraulis, P.J. MOLSCRIPT: a program to produce detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  39. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereo chemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, P., Lomas, D., Carrell, R. et al. Inhibitory conformation of the reactive loop of α1-antitrypsin. Nat Struct Mol Biol 3, 676–681 (1996). https://doi.org/10.1038/nsb0896-676

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0896-676

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing