Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-based design of a potent transition state analogue for TEM-1 β-lactamase

Abstract

The structure of the plasmid-mediated β-lactamase TEM-1 has been solved in complex with a designed boronic acid inhibitor (1R)-1-acetamido-2-(3-carboxyphenyl)ethane boronic acid at 1.7 Å resolution. The boronate inhibitor was designed based on the crystallographic coordinates of the acyl-enzyme intermediate of TEM-1 bound to the substrate penicillin G. The boronate–TEM-1 complex is highly ordered and defines a novel transition state analogue of the deacylation step in the β-lactamase reaction pathway. The design principles of this highly effective inhibitor (Ki=110 nM) and the resulting structural and mechanistic implications are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Abraham, E.P. & Chain, E.B. An enzyme from bacteria able to destroy penicillin. Nature 146, 837 (1940).

    Article  CAS  Google Scholar 

  2. Frere, J.M. β-lactamases and bacterial resistance to antibiotics. Molec. Microbiol. 16, 385–395 (1995).

    Article  CAS  Google Scholar 

  3. Bush, K., Jacoby, G.A. & Medeiros, A.A. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39, 1211–1233 (1995).

    Article  CAS  Google Scholar 

  4. Blazquez, J., Morosini, M.I., Negri, M.C., Gonzalez-Leiza, M. & Baquero, F. Single amino acid replacements at positions altered in naturally occurring extended-spectrum TEM β-lactamases. Antimicrob. Agents Chemother. 39, 145–149 (1995).

    Article  CAS  Google Scholar 

  5. Urban, C., Meyer, K.S., Mariano, N., Rahal, J.J., Flamm, R., Rasmussen, B.A. & Bush, K. Identification of TEM-26 β-lactamase responsible for a major outbreak of ceftazidime-resistant Klebsiella pneumoniae. Antimicrob. Agents Chemother. 38, 392–395 (1994).

    Article  CAS  Google Scholar 

  6. Rasmussen, B.A., Bradford, P.A., Quinn, J.P., Wiener, J., Weinstein, R.A. & Bush, K. Genetically diverse ceftazidime-resistant isolates from a single center: biochemical and genetic characterization of TEM-10 β-lactamases encoded. Antimicrob. Agents Chemother. 37, 1989–1992 (1993).

    Article  CAS  Google Scholar 

  7. Quinn, J.P., Miyashiro, D., Sahm, D., Flamm, R. & Bush, K. Novel plasmid-mediated β-lactamase (TEM-10) conferring selective resistance to ceftazidime and aztreonam in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 33, 1451–1456 (1989).

    Article  CAS  Google Scholar 

  8. Gutmann, L., Kitzis, M.D. & Aear, J.F. Evolution of enzymatic mechanisms of resistance amongst β-lactam antibiotics. J. Int. Med. Res. 18, 371–471 (1990).

    Google Scholar 

  9. Jacoby, G.A. & Mederios, A.A. More extended spectrum β-lactamases. Antimicrob. Agents Chemother. 35, 1697–1700 (1991).

    Article  CAS  Google Scholar 

  10. Sougakoff, W., Goussard, S., Gerbaud, G. & Courvalin, P. Plasmid-mediated resistance to third generation cephalosporins due to point-mutations in TEM-type penicillinase genes. Rev. Infect. Dis. 10, 879–884 (1988).

    Article  CAS  Google Scholar 

  11. Barthelemy, M., Peduzzi, J., Ben Yaghlane, H. & Labia, R. Single amino acid substitutions between SHV-1 β-lactamase and cefotaxime- hydrolyzing SHV-2 enzyme. FEBS Lett. 234, 217–220 (1988).

    Article  Google Scholar 

  12. Reading, C., Farmer, T. & Cole, M. The β-lactamase stability of amoxycillin with the β-lactamase inhibitor, clavulanic acid. J. Antimicrob. Chemother. 11, 27–32 (1983).

    Article  CAS  Google Scholar 

  13. Reading, C. & Cole, M. Clavulanic acid: a β-lactamase-inhibiting β-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11, 852–857 (1977).

    Article  CAS  Google Scholar 

  14. Bush, K., Macalintal, C., Rasmussen, B.A., Lee, V.J. & Yang, Y. Kinetic interactions of tazobactam with β-lactamases from all major structural classes. Antimicrob. Agents Chemother. 37, 851–858 (1993).

    Article  CAS  Google Scholar 

  15. Blazquez, J., Baquero, M.F., Canton, R., Alos, R. & Baquero, F. Characterization of a new TEM-type β-lactamase resistant to clavulanate, sublactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob. Agents Chemother. 37, 2059–2067 (1993).

    Article  CAS  Google Scholar 

  16. Leleu, G., Kitzis, M.D., Vallois, J.M., Gutmann, L. & Decazes, J.M. Different ratios of the piperacillin-tazobactam combination for treatment of experimental meningitis due to Klebsiella pneumoniae producing the TEM-3 extended-spectrum β-lactamase. Antimicrob. Agents Chemother. 38, 195–199 (1994).

    Article  CAS  Google Scholar 

  17. Bush, K., Flamm, R.K., Ohringer, S., Singer, S.B., Summerill, R. & Bonner, D.P. Effect of clavulanic acid on activity of β-lactam antibiotics in Serratia marcescens isolates producing both a TEM β-lactamase and a chromosomal cephalosporinase. Antimicrob. Agents Chemother. 35, 2203–2208 (1991).

    Article  CAS  Google Scholar 

  18. Strynadka, N.C. et al. Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution. Nature 359, 700–705 (1992).

    Article  CAS  Google Scholar 

  19. Matagne, A. & Frere, J.M. Contribution of mutant analysis to the understanding of enzyme catalysis: the case of class A β-lactamases. Biochem. Biophys. Acta 1246, 109–127 (1995).

    PubMed  Google Scholar 

  20. Herzberg, O. & Moult, J. Penicillin-binding and degrading enzymes. Curr. Opin. Struct. Biol. 1, 946–952 (1991).

    Article  CAS  Google Scholar 

  21. Pratt, R.F. Inhibition of a class C β-lactamase by a specific phosphonate monoester. Science 246, 917–919 (1989).

    Article  CAS  Google Scholar 

  22. Pratt, R.F. & Rahil, J. Kinetics and mechanism of β-lactamase inhibition by phosphonamidates: the quest for a proton. Biochemistry 32, 10763–10772 (1993).

    Article  Google Scholar 

  23. Pratt, R.F. & Rahil, J. Phosphonate monoester inhibitors of class A β-lactamases. Biochem. J. 275, 793–795 (1991).

    Article  Google Scholar 

  24. Chen, C.C.H., Rahil, J., Pratt, R.F. & Herzberg, O. Structure of a phosphonate-inhibited β-lactamase. An analog of the tetrahedral transition state intermediate of β-lactam hydrolysis. J. Mol. Biol. 234, 165–179 (1993).

    Article  CAS  Google Scholar 

  25. Rahil, J. & Pratt, R.F. Characterization of covalently bound enzyme inhibitors as transition-state analogs by protein stability measurements: phosphonate monoester inhibitors of a β-lactamase. Biochemistry 33, 116–125 (1994).

    Article  CAS  Google Scholar 

  26. Dobozy, O., Mile, I., Ferencz, I. & Csanyi, V. Effect of electrolytes on the activity and iodine sensitivity of penicillinase from B. cereus. Acta Biochim. Biophys. Acad. Sci. Hung. 6, 97–105 (1971)

    CAS  PubMed  Google Scholar 

  27. Crompton, I.E., Cuthbert, B.K., Lowe, G. & Waley, S.G. β-lactamase inhibitors. The inhibition of serine β-lactamases by specific boronic acids. Biochem. J. 251, 453–459 (1988).

    Article  CAS  Google Scholar 

  28. Beeseley, T. et al. The inhibition of class C β-lactamases by boronic acids. Biochem. J. 209, 229–233 (1983).

    Article  Google Scholar 

  29. Baldwin, J.E. et al. Direct observation of a tetrahedral boronic acid-β-lactamase complex using boron-11 NMR spectroscopy. J. Chem. Soc. Chem. Commun. 121, 573–574 (1991).

    Article  Google Scholar 

  30. Martin, R. & Jones, J.B. Rational design and synthesis of a highly effective transition state analog inhibitor of the RTEM-1 β-lactamase. Tetrahedron Lett. 36, 8394–8402 (1995).

    Google Scholar 

  31. Ambler, R.P. et al. A standard numbering scheme for the class A β-lactamases. Biochem. J. 276, 269–270 (1991).

    Article  CAS  Google Scholar 

  32. Knowles, J.R. Penicillin resistance: the chemistry of β-lactamase inhibition. Acct. Chem. Res. 18, 97–104 (1985).

    Article  CAS  Google Scholar 

  33. Herzberg, O. & Moult, J. Bacterial resistance to β-lactam antibiotics: crystal structure of β-lactamase from Staphylococcal aureus PC1 at 2.5 resolution. Science 236, 694–701 (1987).

    Article  CAS  Google Scholar 

  34. Sutton, B.J. et al. An X-ray-crystallographic study of β-lactamase II from Bacillus cereus at 0.35 nm resolution. Biochem. J. 248, 181–188 (1987).

    Article  CAS  Google Scholar 

  35. Herzberg, O.J. Refined crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.0 Å resolution. J. Mol. Biol. 217, 701–719 (1991).

    Article  CAS  Google Scholar 

  36. Jelsch, C., Lenfant, F., Masson, J.M. & Samama, J.P. β-lactamase TEM-1 of E. coli. Crystal structure determination at 2.5 Å resolution. FEBS Lett. 299, 135–142 (1992).

    Article  CAS  Google Scholar 

  37. Jelsch, C., Mourey, L., Masson, J.M. & Samama, J.P. Crystal structure of Escherichia coli TEM1 β-lactamase at 1.8 Å resolution. Proteins 16, 364–383 (1993).

    Article  CAS  Google Scholar 

  38. Knox, J.R. & Moews, P.C. β-lactamase of Bacillus licheniformis 749/C. Refinement at 2 Å resolution and analysis of hydration. J. Mol. Biol. 220, 435–455 (1991).

    Article  CAS  Google Scholar 

  39. Adachi, H., Ohta, T. & Matsuzawa, H. Site-directed mutants at position 166 of RTEM-1 β-lactamase that form a stable acyl-enzyme intermediate with penicillin. J. Biol. Chem. 266, 3186–3191 (1991).

    CAS  PubMed  Google Scholar 

  40. Lobkovsky, E. et al. Evolution of an enzyme activity: crystallographic structure at 2 Å resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc. Natl. Acad. Sci. USA 90, 11257–11261 (1993).

    Article  CAS  Google Scholar 

  41. Swaren, P. et al. Electrostatic analysis of TEM1 β-lactamase: effect of substrate binding, steep potential gradients and consequences of site-directed mutations. Structure 3, 603–614 (1995).

    Article  CAS  Google Scholar 

  42. Martin, R., Gold, M. & Jones, J.B. Inhibition of the RTEM-1 β-lactamase by boronic acids. Bioorg. Med. Chem. Lett. 4, 1229–1234 (1994).

    Article  CAS  Google Scholar 

  43. Leung, Y.C., Robinson, C.V., Aplin, R.T. & Waley, S.G. Site-directed mutagenesis of β-lactameas I: role of Glu-166. Biochem. J. 299, 671–678 (1994).

    Article  CAS  Google Scholar 

  44. Christiansen, H., Martin, M.T. & Waley, S.G. β-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Biochem. J. 266, 853–861 (1990).

    Google Scholar 

  45. Aplin, R.T., Baldwin, J.E., Schofield, C.J. & Waley, S.G. Use of electrospray mass spectrometry to directly observe an acyl enzyme intermediate in β-lactamase catalysis. FEBS Lett. 277, 212–214 (1990).

    Article  CAS  Google Scholar 

  46. Little, C., Emanuel, E.L., Gagnon, J. & Waley, S.G. Identification of an essential glutamic acid residue in β-lactamase II from Bacillus cereus. Biochem. J. 233, 465–469 (1986).

    Article  CAS  Google Scholar 

  47. Escobar, W.A., Tan, A.K. & Fink, A.L. Site-directed mutagenesis of β-lactamase leading to accumulation of a catalytic intermediate. Biochemistry 30, 10783–10787 (1991).

    Article  CAS  Google Scholar 

  48. Gibson, R.M., Christensen, H. & Waley, S.G. Site-directed mutagenesis of β-lactamase I. Single and double mutants of Glu-166 and Lys-73. Biochem. J. 272, 613–619 (1990).

    Article  CAS  Google Scholar 

  49. Viera, J. & Messing, J. Production of single-stranded plasmid DNA. Meth. Enzym. 153, 3–11 (1987).

    Article  Google Scholar 

  50. Xuong, N.H., Sullivan, D., Nielson, C., Hamlin, R. & Anderson, D. Strategy for data collection from protein crystals using a multiwire counter area detector diffractometer. J. Appl. Crystallogr. 18, 342–350 (1985).

    Article  Google Scholar 

  51. Howard, A.J., Nielson, C. & Xuong, N.H. Software for a diffractometer with multiwire area detector. Meth. Enzymol. 114, 452–472 (1985).

    Article  CAS  Google Scholar 

  52. Tronrud, D.E. Conjugate-direction minimization: an improved method for the refinement of macromolecules. Acta Crystallogr. A48, 912–916 (1992).

    Article  CAS  Google Scholar 

  53. Chen, C.C.H. & Herzberg, O. Inhibition of β-lactamase by clavulanate: trapped intermediates in cryocrystallographic studies. J. Mol. Biol. 224, 1103–1113 (1992).

    Article  CAS  Google Scholar 

  54. Bernstein, F.C. et al. The Protein Data Bank: A computer-based archival filefor macromolecularstructures. J. Mol. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  55. Merrit, E.A. & Murphy, M.E.P. Raster3D Version 2.0 a program fro photorealistic molecular graphics. Acta Crystallgr. D50, 869–873 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strynadka, N., Martin, R., Jensen, S. et al. Structure-based design of a potent transition state analogue for TEM-1 β-lactamase. Nat Struct Mol Biol 3, 688–695 (1996). https://doi.org/10.1038/nsb0896-688

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0896-688

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing