Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA

Abstract

To visualize the interplay of RNA structural interactions in a ligand binding site, we have determined the solution structure of a high affinity RNA–theophylline complex using NMR spectroscopy. The structure provides insight into the ability of this in vitro selected RNA to discriminate theophylline from the structurally similar molecule caffeine. Numerous RNA structural motifs combine to form a well-ordered binding pocket where an intricate network of hydrogen bonds and stacking interactions lock the theophylline into the complex. Two internal loops interact to form the binding site which consists of a sandwich of three base triples. The complex also contains novel base-zipper and 1-3-2 stacking motifs, in addition to an adenosine platform and a reversed sugar. An important feature of the RNA is that many of the conserved core residues participate in multiple overlapping tertiary interactions. This complex illustrates how interlocking structural motifs can be assembled into a highly specific ligand-binding site that possesses high levels of affinity and molecular discrimination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DMA polymerase. Science 249, 505–510 (1990).

    CAS  Google Scholar 

  2. Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS  Google Scholar 

  3. Gold, L., Polisky, B., Uhlenbeck, O. & Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797 (1995).

    CAS  PubMed  Google Scholar 

  4. Lauhon, C.T. & Szostak, J.W. RNA aptamers that bind flavin and nicotinamide factors. J. Am. Chem. Soc. 117, 1246–1257 (1995).

    CAS  PubMed  Google Scholar 

  5. Connell, G.J., Illangesekare, M. & Yarus, M. Three small oligoribonucleotides with specific arginine sites. Biochemistry 32, 5497–5502 (1993).

    CAS  PubMed  Google Scholar 

  6. Sassanfar, M. & Szostak, J.W. An RNA motif that binds ATP. Nature 364, 550–553 (1993).

    CAS  PubMed  Google Scholar 

  7. Wang, Y., Killian, J., Hamasaki, K. & Rando, R.R. RNA molecules that specifically and stoichiometricatly bind aminoglycoside antibiotics with high affinities. Biochemistry 35, 12338–12346 (1996).

    CAS  PubMed  Google Scholar 

  8. Gold, L. Oligonucleotides as research, diagnostic, and therapeutic agents. J. Biol. Chem. 270, 13581–13584 (1995).

    CAS  PubMed  Google Scholar 

  9. Irvine, D., Tuerk, C. & Gold, L. Selexion — systematic evolution of ligands by exponential enrichment with integrated optimization by nonlinear-analysis. J. Mol. Biol. 222, 739–761 (1991).

    CAS  PubMed  Google Scholar 

  10. Jenison, R.D., Gill, S.C., Pardi, A. & Polisky, B. High-resolution molecular discrimination by RNA. Science 263, 1425–1429 (1994).

    CAS  PubMed  Google Scholar 

  11. Milligan, J.F. & Uhlenbeck, O.C. Synthesis of small RNAs using T7 RNA polymerase. Meth. Enz. 180, 51–62 (1989).

    CAS  Google Scholar 

  12. Pardi, A. Multidimensional heteronuclear NMR experiments for structure determination of isotopically labeled RNA. Meth. Enz. 261, 350–380 (1995).

    CAS  Google Scholar 

  13. Brünger, A.T. X-PLOR 3.1: A System for X-ray Crystallography and NMR (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  14. Wimberly, B., Varani, G. & Tinoco, I., Jr. The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry 32, 1078–87 (1993).

    CAS  PubMed  Google Scholar 

  15. Szewczak, A.A. & Moore, P.B. The sarcin/ricin loop, a modular RNA. J. Mol. Biol. 247, 81–98 (1995).

    CAS  PubMed  Google Scholar 

  16. Battiste, J.L., Ruoying, T., Frankel, A.D. & Williamson, J.R. Assignment and modeling of the Rev Response Element RNA bound to a Rev peptide using 13C-heteronuclear NMR. J. Biomol. NMR 6, 375–389 (1995).

    CAS  PubMed  Google Scholar 

  17. Cate, J.H. et al. RNA tertiary structure mediation by adenosine platforms. Science 273, 1696–1699 (1996).

    CAS  PubMed  Google Scholar 

  18. Saenger, W. Principles of NucleicAcid Structure (Springer-Verlag, New York; 1984).

    Google Scholar 

  19. Wu, M. & Turner, D.H. Solution structure of (rGCGGACGC)2 by two-dimensional NMR and the iterative relaxation matrix approach. Biochemistry 35, 9677–9689 (1996).

    CAS  PubMed  Google Scholar 

  20. Gehring, K., Leroy, J.L. & Guéron, M. A tetrameric DNA-structure with protonated cytosineṁcytosine base-pairs. Nature 363, 561–565 (1993).

    CAS  PubMed  Google Scholar 

  21. Pley, H.W., Flaherty, K.M. & McKay, D.B. Three-dimensional structure of a hammerhead ribozyme. Nature 372, 68–74 (1994).

    CAS  PubMed  Google Scholar 

  22. Scott, W.G., Finch, J.T. & Klug, A. The crystal structure of an all-RNA hammerhead ribozyme — a proposed mechanism for RNA catalytic cleavage. Cell 81, 991–1002 (1995).

    CAS  PubMed  Google Scholar 

  23. Feigon, J., Dieckmann, T. & Smith, F.W. Aptamer structures from A to Z. Chem. and Biol. 3, 611–617 (1996).

    CAS  Google Scholar 

  24. Dieckmann, T., Suzuki, E., Nakamura, G.K. & Feigon, J. Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA 2, 628–640 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, F., Kumar, R.A., Jones, R.A. & Patel, D.J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature 382, 183–186 (1996).

    CAS  PubMed  Google Scholar 

  26. Michel, F., Hanna, M., Green, R., Bartel, D.P. & Szostak, J.W. The guanosine binding site of theTetrahymena ribozyme. Nature 342, 391–395 (1989).

    CAS  PubMed  Google Scholar 

  27. Yarus, M., Levine, J., Morin, G.B. & Cech, T.R. A Tetrahymena intron nucleotide connected to the GTP/arginine site. Nucleic Acids Res. 17, 6969–81 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8789 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nikonowicz, E.P. et al. Preparation of 13C/15N-labelled RNAs for heteronuclear multidimensional NMR studies. Nucleic Acids Res. 20, 4507–4513 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bodenhausen, G. & Ruben, D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189 (1980).

    CAS  Google Scholar 

  31. Piotto, M., Saudek, V. & Sklenar, V. Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous solutions. J. Biomol. NMR 2, 661–665 (1992).

    CAS  PubMed  Google Scholar 

  32. Sklenar, V. & Bax, A. Spin-echo water suppression for the generation of pure-phase two-dimensional NMR spectra. J. Magn. Reson. 74, 469–479 (1987).

    CAS  Google Scholar 

  33. Simorre, J.P., Zimmermann, G.R., Pardi, A., Farmer, B.T., II & Mueller, L. Triple resonance HNCCCH experiments for correlating exchangeable and nonexchangeable cytidine and uridine base protons in RNA. J. Biomol. NMR 6, 427–432 (1995).

    CAS  PubMed  Google Scholar 

  34. Simorre, J.P., Zimmermann, G.R., Mueller, L. & Pardi, A. Triple resonance experiments for assignment of adenine base resonances in 13C/15N-labeled RNA. J. Am. Chem. Soc. 118, 5316–5317 (1996).

    CAS  Google Scholar 

  35. Simorre, J.P., Zimmermann, G.R., Mueller, L. & Pardi, A. Correlation of the guanine exchangeable and nonexchangeable base protons in 13C/15N-labeled RNA with a HNC-TOCSY-CH experiment. J. Biomol. NMR 7, 153–156 (1996).

    CAS  PubMed  Google Scholar 

  36. Sklenar, V., Peterson, R.D., Rejante, M.R., Wang, E. & Feigon, J. Two-dimensional triple-resonance HCNCH experiment for direct correlation of ribose H1′ and base H8, H6 protons in 13C/15N-labeled RNA Oligonucleotides. J. Am. Chem. Soc. 115, 12181–12182 (1993).

    CAS  Google Scholar 

  37. Bax, A., Clore, M. & Gronenborn, A.M. 1H-1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J. Magn. Reson. 88, 425–431 (1990).

    CAS  Google Scholar 

  38. Pardi, A. & Nikonowicz, E.P. A simple procedure for resonance assignment of the sugar protons in 13C-labeled RNAs. J. Am. Chem. Soc. 114, 9301–9302 (1992).

    Google Scholar 

  39. Ranee, M., et al. Improved spectral resolution in COSY 1H-NMR spectra of proteins via double-quantum filtering. Biochem. Biophys. Res. Common. 117, 479–485 (1983).

    Google Scholar 

  40. Schwalbe, H. et al. Determination of a complete set of coupling constants in 13C-labeled Oligonucleotides. J. Biomol. NMR 4, 631–644 (1994).

    CAS  PubMed  Google Scholar 

  41. Mueller, L., Legault, P. & Pardi, A. Improved RNA structure determination by detection of NOE contacts to exchange-broadened amino protons. J. Am. Chem. Soc. 117, 11043–11048 (1995).

    CAS  Google Scholar 

  42. Otting, G. & Wüthrich, K. Heteronuclear filters in two-dimensional 1H,1H-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions. Q. Rev. Biophys. 23, 39–96 (1990).

    CAS  PubMed  Google Scholar 

  43. Mori, S., Abeygunawardana, C., Johnson, M.O. & Vanzijl, P.C.M. Improved sensitivity of HSQC spectra of exchanging protons at short InterScan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J. Magn. Reson. B 108, 94–98 (1995).

    CAS  PubMed  Google Scholar 

  44. Talluri, S. & Wagner, G. An optimized 3D NOESY-HSQC. J. Magn. Reson. B 112, 200–205 (1996).

    CAS  PubMed  Google Scholar 

  45. Heus, H.A. & Pardi, A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191–194 (1991).

    CAS  PubMed  Google Scholar 

  46. Jucker, F.M., Heus, H.A., Yip, P.F., Moors, E.H. & Pardi, A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J. Mol. Biol. 264, 968– (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Pardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, G., Jenison, R., Wick, C. et al. Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat Struct Mol Biol 4, 644–649 (1997). https://doi.org/10.1038/nsb0897-644

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0897-644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing