Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Latent and active p53 are identical in conformation

Abstract

p53 is a nuclear phosphoprotein that regulates cellular fate after genotoxic stress through its role as a transcriptional regulator of genes involved in cell cycle control and apoptosis. The C-terminal region of p53 is known to negatively regulate sequence specific DNA-binding of p53; modifications to the C-terminus relieve this inhibition. Two models have been proposed to explain this latency: (i) an allosteric model in which the C-terminal domain interacts with another domain of p53 or (ii) a competitive model in which the C-terminal and the core domains compete for DNA binding. We have characterized latent and active forms of dimeric p53 using gel mobility shift assays and NMR spectroscopy. We show on the basis of chemical shifts that dimeric p53 both containing and lacking the C-terminal domain are identical in conformation and that the C-terminus does not interact with other p53 domains. Similarly, NMR spectra of isolated core and tetramerization domains confirm a modular p53 architecture. The data presented here rule out an allosteric model for the regulation of p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linear sequence and domain structure of p53.
Figure 2: DNA binding properties of dimeric p53.
Figure 3: Comparison of NMR spectra of active and latent dimeric p53.
Figure 4: Solution secondary structure of MQLR(82–360).
Figure 5: NMR spectra of individual p53 domains.

Similar content being viewed by others

References

  1. Ko, L.J. & Prives, C. Genes Dev. 10, 1054–1072 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Levine, A.J. Cell 88, 323–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Kuerbitz S.J., Plunkett B.S., Walsh W.V. & Kastan M.B. Proc. Natl. Acad. Sci. USA 15, 7491–7495 (1992).

    Article  Google Scholar 

  4. May, P. & May, E. Oncogene 18, 7621–7636 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Jayaraman, L. & Prives, C. Cell. Mol. Life Sci. 55, 76–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Halazonetis, T.D. & Kandil, A.N. EMBO J. 12, 5057–5064 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hupp, T.R. & Lane, D.P. Curr. Biol. 4, 865–875 (1996).

    Article  Google Scholar 

  8. El-Deiry, W.S., Kern, S.E., Pietenpol, J.A., Kinzler K.W. & Vogelstein, B. Nature Genet. 1, 45–49 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Funk, W.D., Pak, D.T., Karas, R.H., Wright, W.E. & Shay J.W. Mol. Cell Biol. 12, 2866–2871 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hupp, T.R., Meek, D.W., Midgley, C.A. & Lane, D.P. Cell 71, 875–886 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Wolf, D., Harris, N., Goldfinger, N. & Rotter, V. Mol. Cell. Biol. 5, 127–132 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wolkowicz R., Peled A., Elkind N.B. & Rotter V. Cancer Detect. Prev. 22, 1–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Zhao K., Chai X., Johnston K., Clements A. & Marmorstein R. J. Biol. Chem. 276, 12120–12127 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Cho, Y., Gorina, S., Jeffrey, P.D. & Pavletich, N.P. Science 265, 346–355 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Gorina, S. & Pavletich, N.P. Science 274, 1001–1005 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, W. et al. Nature Struct. Biol. 1, 877–890 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Clore G.M. et al. Science 265, 386–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Jeffrey, R.D., Gorina, S. & Pavletich, N.P. Science 26, 1498–1502 (1995).

    Article  Google Scholar 

  19. Kussie, P.H. et al. Science 274, 948–953 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Rustandi, R.R., Baldisseri, D.M. & Weber, D.J. Nature Struct. Biol. 7, 570–574 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Jayaraman J. & Prives, C. Cell 81, 1021–1029 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Davison, T.S. et al. J. Mol. Biol. 307, 605–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Matsumura, I. & Ellington, A.D. Protein Sci. 8, 731–740 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anderson, M.E., Woelker, B., Reed, M., Wang, P. & Tegtmeyer, P. Mol. Cell. Biol. 17, 6255–6264 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mclure, K.G. & Lee, P.W.K. EMBO J. 17, 3342–3350 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mulder, F.A.A., Schipper, D., Bott, R. & Boelens, R. J. Mol. Biol. 292, 111–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Seavey, B.R., Farr, E.A., Westler, W.M. & Markley, J.L. J. Biomol. NMR 1, 217–236 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Pavletich, N.P, Chambers, K.A. & Pabo, C.O. Genes Dev. 7, 2556–2564 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Metzler, W.J. et al. Biochemistry 32, 13818–13829 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Wishart, D.S. & Sykes, B.D. Methods Enzymol. 239, 363–392 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Gardner, K.H. & Kay, L.E. Annu. Rev. Biophys. Biomol. Struct. 27, 357–406 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Delaglio, F. et al. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, D. & Kay, L.E. J. Am. Chem. Soc. 121, 2571–2575 (1999).

    Article  CAS  Google Scholar 

  35. Konrat, R., Yang, D. & Kay, L.E. J. Biomol. NMR 15, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Mulder, F.A.A., Ayed, A., Yang, D., Arrowsmith, C.H. & Kay, L.E. J. Biomol. NMR 18, 173–176 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Pineda-Lucena and T. Davison for useful discussions. This work was supported by the National Cancer Institute of Canada with funds from the Canadian Cancer Society and by the Canadian Institutes of Health Research (CIHR). A.A. is the recipient of the Governor General's award for Leukemia Research from the Leukemia Research Fund of Canada. F.A.A.M. is the recipient of a postdoctoral fellowship from the European molecular Biology Organization. L.E.K. is a foreign investigator of the Howard Hughes Medical Research Institute. C.H.A. is a CIHR scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayeda Ayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayed, A., Mulder, F., Yi, GS. et al. Latent and active p53 are identical in conformation. Nat Struct Mol Biol 8, 756–760 (2001). https://doi.org/10.1038/nsb0901-756

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0901-756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing