Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a PUT3–DNA complex reveals a novel mechanism for DMA recognition by a protein containing a Zn2Cys6 binuclear cluster

Abstract

PUT3 is a member of a family of at least 79 fungal transcription factors that contain a six-cysteine, two-zinc domain called a ‘Zn2Cys6 binuclear cluster’. We have determined the crystal structure of the DNA binding region from the PUT3 protein bound to its cognate DNA target. The structure reveals that the PUT3 homodimer is bound asymmetrically to the DNA site. This asymmetry orients a β-strand from one protein subunit into the minor groove of the DNA resulting in a partial amino acid-base pair intercalation and extensive direct and water-mediated protein interactions with the minor groove of the DNA. These interactions facilitate a sequence dependent kink at the centre of the DNA site and specify the intervening base pairs separating two DNA half-sites that are contacted in the DNA major groove. A comparison with the GAL4–DNA and PPR1–DNA complexes shows how a family of related DNA binding proteins can use a diverse set of mechanisms to discriminate between the base pairs separating conserved DNA half-sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Axelrod, J.D., Majors, J. & Brandriss, M.C. Proline independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo . Mol. Cell. Biol. 11, 564–567 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marczak, J.E. & Brandriss, M.C. Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator. Mol. Cell. Biol. 11, 2609–2619 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siddiqui, A.M. & Brandriss, M.C. The Saccharomyces cerevisiae PUT3 activator protein associates with praline specific upstream activator sequences. Mol. Cell. Biol. 9, 4706–4712 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brandriss, M.C. Evidence for positive regulation of the proline utilization pathway in Saccharomyces cerevisiae . Genetics 117, 429–435 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brandriss, M.C. & Magasanik, B. Genetics and physiology of proline utilization in Saccharomyces cerevisiae: mutation causing constitutive enzyme expression. J. Bacteriol. 140, 504–507 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schjerling, P. & Holmberg, S. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Res. 24, 4599–4607 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gardner, K.H., Anderson, S.F. & Coleman, J.E. Solution structure of the Kluyvemmyces lactis LAC9 Cd2Cys6 DNA-binding domain. Nature Struct. Biol. 2, 898–905 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Johnston, M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae Microbiol. Rev. 51, 458–476 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Marmorstein, R. & Harrison, S.C. Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev. 8, 2504–12 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Liang, S.D., Marmorstein, R., Harrison, S.C. & Ptashne, M. DNA sequence preferences of GAL4 and PPR1: how a subset of Zn2Cys6 binuclear cluster proteins recognize DNA. Mol. Cell. Biol. 16, 3773–3780 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marmorstein, R., Carey, M., Ptashne, M. & Harrison, S.C. DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356, 408–414 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Vashee, S., Xu, H., Johnston, S.A. & Kodadek, T. How do Zn2Cys6 proteins distinguish between similar upstream activation sites? J. Biol. Chem. 268, 24699–24706 (1993).

    CAS  PubMed  Google Scholar 

  13. Robbins, A.H. et al. Refined crystal structure of Cd, Zn metallothionein at 2.0 Å resolution. J. Mol. Biol. 221, 1269–1293 (1991).

    CAS  PubMed  Google Scholar 

  14. Vasak, M., Worgotter, E., Wagner, G., Kagi, J.H. & Wuthrich, K. Metal co-ordination in rat liver metallothionein-2 prepared with and without reconstitution of the metal clusters, and comparison with rabbit liver metallothionein-2. J. Mol. Biol. 196, 711–719 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Baleja, J.D., Marmorstein, R., Harrison, S.C. & Wagner, G. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae . Nature 356, 405–453 (1992).

    Article  Google Scholar 

  16. Kraulis, P.J., Raine, A.R.C., Gadhavi, P.L. & Laue, E.D. Structure of the DNA binding domain of zinc GAL4. Nature 356, 448–450 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Timmerman, J. et al. 1H, 15N Resonance assignment and three-dimensional structure of CYP1 (HAP1) DNA-binding domain. J. Mol. Biol. 259, 792–804 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Walters, K., Dayie, K.T., Reece, R.J., Ptashne, M. & Wagner, G. Structure and mobility of the PUT3 dimer: a DNA pincer. Nature Struct. Biol. 4, 744–750 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Cohen, C. & Parry, D.A. Alpha-helical coiled coils and bundles: how to design an alpha-helical protein. Proteins 7, 1–15 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Landschultz, W.H., Johnson, P.F. & Mcknight, S.L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 245, 1759–1764 (1988).

    Article  Google Scholar 

  21. O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two stranded parallel coiled-coil. Science 254, 539–544 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Murre, C., McCaw, P.S. & Baltimore, D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, myoD, and myc proteins. Cell 56, 777–783 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Jones, N. Transcriptional regulation by dimerization: two sides to an incestuous relationship. Cell 61, 9–11 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Werner, M.H., Huth, J.R., Gronenborn, A.M. & Clore, G.M. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 81, 705–714 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Love, J.J. et al. Structural basis for DNA bending by architectural transcription factor LEF-1. Nature 376, 791–795 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Schumacher, M.A., Choi, K.Y., Zalkin, H. & Brennan, R.G. Crystal structure of Lacl member, PurR, bound to DNA: minor groove binding by α helices. Science 266, 763–770 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Lewis, M. et al. Crystal structure of the lactose operon represser and its complexes with DNA and inducer. Science 271, 1247–1254 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, J.L., Nikolov, D.B. & Burley, S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520–527 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, Y., Geiger, J.H., Hahn, S. & Sigler, P.B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Rice, P.A., Yang, S.-W., Mizuuchi, K. & Nash, H.A. Crystal structure of a IHF-DNA complex: a protein-induced DNA U-turn. Cell 87, 1295–1306 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Werner, M.H., Gronenborn, A.M. & Clore, G.M. Intercalation, DNA kinking, and control of transcription. Science 271, 778–784 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Hoffman, P. & Schepartz, A. Studies on the half-site spacing specificity of the yeast zinc cluster protein PUT3. Bio. Med. Chem. Lett., in the press.

  33. Schultz, S.C., Shields, G.C. & Steitz, T.A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90°. Science 253, 1001–1007 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Hegde, R.S., Grossman, S.R., Laimins, L.A. & Sigler, P.B. Crystal structure at 1.7 Å of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. Nature 359, 505–512 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Konig, P. & Richmond, T.J. The X-ray structure of the GCN4-bZIP bound to a ATF/CREB site DNA shows the complex depends on DNA flexibility. J. Mol. Biol. 233, 139–154 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Keller, W., Konig, P. & Richmond, T.J. Crystal structure of a bZIP/DNA complex at 2.2 Å: determinants of DNA specific recognition. J. Mol. Biol. 254, 657–667 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Ellenberger, T.E., Brandl, C.J., Struhl, K. & Harrison, S.C. The GCN4 basic-region leucine zipper binds DNA as a dimer of uninterrupted α-helices: crystal structure of the protein-DNA complex. Cell 71, 1223–1237. (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Weiss, M.A. et al. Folding transitions in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347, 575–578 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. O'Neil, K.T., Shuman, J.D., Ampe, C. & Degrade, W.F. DNA-induced increase in the α-helical content of C/EBP and GCN4. Biochemistry 30, 9030–9034 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Spolar, R.S. & Record, M.T. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Halvorsen, Y.-D.C., Nandabalan, K. & Dickson, P.C. LAC9 DNA binding domain coordinates two zinc atoms per monomer and contacts DNA as a dimer. Mol. Cell. Biol. 11, 1777–1784 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wray, L.U.J., Witte, M.M., Dickson, R.C. & Riley, M.I. Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulone of Kluyveromyces lactis: structural and functional relationships to GAL4 of Saccharomyces cerevisiae . Mol. Cell. Biol. 7, 1111–1121 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Giles, N.H. et al. Gene organization and regulation in the qa (quinic acid) gene cluster of Neurospora crassa . Microbiol. Rev., 338–358 (1985).

  44. Huit, L. Molecular analysisof the Neurospora qa-1 regulatory region indicates that two interacting genes control qa gene expression. Proc. Natl. Acad. Sci. USA 81, 1174–1178 (1994).

    Article  Google Scholar 

  45. Patel, V.B., Schweizer, M., Dykstra, C.C., Kushner, S.R. & Giles, N.H. Genetic organization and transcriptional regulation in the qa gene cluster of Neurospora crassa . Proc. Natl. Acad. Sci. USA 78, 5783–5787 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reece, R.J. & Ptashne, M. Determinants of binding site specificity among yeast C6 zinc cluster proteins. Science 261, 909–911 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Hellauer, K., Rochon, M.-H. & Turcotte, B. A novel DNA binding motif for yeast zinc cluster proteins: the Leu3p and Pdr3p transcriptional activators recognize everted repeats. Mol. Cell. Biol. 16, 6096–6102 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, L. & Guarente, L. The yeast activator HAP1 - a GAL4 family member - binds DNA in a directly repeated orientation. Genes Dev. 8, 2110–2119 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, L. & Guarente, L. The C6 zinc cluster dictates asymmetric binding by HAP1. EMBO J. 15, 4676–4681 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aggarwal, A.K. Crystallization of DNA binding proteins with oligonucleotides. Methods: A companion to Methods in Enzymology l, 83–90 (1990).

    Article  Google Scholar 

  51. Kabsch, W. Automatic indexing of rotation diffraction patterns. J. Appl. Crystallogr. 21, 67–71 (1988).

    Article  CAS  Google Scholar 

  52. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  53. Gewirth, D., Otwinowski, Z. & Minor, W. The HKL Version 1.0 manual (Yale University Press, New Haven, Connecticut, 1993).

    Google Scholar 

  54. Furey, W. & Swaminathan, S. PHASES: A program package for the processing and analysisof diffraction data from macromolecules. in Meth. Fnzymology (eds. Carter, C. & Sweet, R.) (Academic Press, Orlando, FL, 1995).

    Google Scholar 

  55. Jones, T.A. A graphics model building and refinement system for macromolecules.J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  56. Brunger, A.T. The free R value: a novel statistical quantity assessing the accuracy of crystal structures. Nature 335, 472–474 (1992).

    Article  Google Scholar 

  57. Brunger, A.T. X-PLOR Manual, Version 3.8. (Yale University Press., New Haven, CT, 1996).

    Google Scholar 

  58. Brunger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Hodel, A., Kim, S.-H. & Brunger, A.T. Model bias in macromolecular crystal structures. Acta. Crystallogr. A48, 851–858 (1992).

    Article  CAS  Google Scholar 

  60. Carey, J. Gel retardation Methods Enzymol. 208, 103–117 (1991).

    Article  CAS  PubMed  Google Scholar 

  61. Merritt, E.A. & Murphy, M.E.P. RASTER3D version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

  62. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaminathan, K., Flynn, P., Reece, R. et al. Crystal structure of a PUT3–DNA complex reveals a novel mechanism for DMA recognition by a protein containing a Zn2Cys6 binuclear cluster. Nat Struct Mol Biol 4, 751–759 (1997). https://doi.org/10.1038/nsb0997-751

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0997-751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing