Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Looking into the energy landscape of myoglobin

Abstract

Using the haem group of myoglobin as a probe in optical experiments makes it possible to study its conformational fluctuations in real time. Results of these experiments can be directly interpreted in terms of the structure of the potential energy surface of the protein. The current view is that proteins have rough energy landscapes comprising a large number of minima which represent conformational substates, and that these substates are hierarchically organized. Here, we show that the energy landscape is characterized by a number of discrete distributions of barrier heights each representing a tier within a hierarchy of conformational substates. Furthermore, we provide evidence that the energy surface is self-similar and offer suggestions for a characterization of the protein fluctuations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Frauenfelder, H., Petsko, G. & Tsernoglou, D., X-ray diffraction as a probe of protein structural dynamics. Nature 280, 558–563 (1979).

    Article  CAS  Google Scholar 

  2. Frauenfelder, H. & Wolynes, P.G., Where the physics of complexity and simplicity meet. Physics Today 47, 58–64 (1994).

    Article  CAS  Google Scholar 

  3. Frauenfelder, H., Sligar, S.G. & Wolynes, P.G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  CAS  Google Scholar 

  4. Ansari, A. et al. Protein states and proteinquakes. Proc. natn. Acad. Sci. U.S.A. 82, 5000–5004 (1985).

    Article  CAS  Google Scholar 

  5. Zollfrank, J., Friedrich, J., Vanderkooi, J.M. & Fidy, J. Conformational relaxation of a low-temperature protein as probed by photochemical hole burning. Biophys. J. 59, 305–312 (1991).

    Article  CAS  Google Scholar 

  6. Thorn Leeson, D. & Wiersma, D.A. Low-temperature protein dynamics studied by the long-lived stimulated photon echo. J. phys. Chem. 98, 3913–3916 (1994).

    Article  CAS  Google Scholar 

  7. Jankowiak, R. & Small, G.J. Hole-burning spectroscopy and relaxation dynamics of amorphous solids at low temperatures. Science 237, 618–625 (1987).

    Article  CAS  Google Scholar 

  8. Wiersma, D.A. & Duppen, K. Picosecond holographic-grating spectroscopy. Science 237, 1147–1154 (1987).

    Article  CAS  Google Scholar 

  9. Narasimhan, L.R. et al. Probing organic glasses at low temperature with variable time scale optical dephasing measurements. Chem. Rev. 90, 439–457 (1990).

    Article  CAS  Google Scholar 

  10. Friedrich, J. Hole burning spectroscopy and physics of proteins. Meth. Enzym. 246, 226–259 (1995).

    Article  CAS  Google Scholar 

  11. Friedrich, J., Gafert, J., Zollfrank, J., Vanderkooi, J.M. & Fidy, J. Spectral hole burning and selection of conformational substates in chromoproteins. Proc. natn. Acad. Sci. U.S.A. 91, 1029–1033 (1994).

    Article  CAS  Google Scholar 

  12. Gafert, J., Friedrich, J., Vanderkooi, J.M. & Fidy, J. Structural changes and internal fields in proteins: A hole-burning Stark effect study of horseradish peroxidase. J. phys. Chem. 99, 5523–5527 (1995).

    Google Scholar 

  13. Littau, K.A., Bai, Y.S. & Fayer, M.D. Time evolution of non-photochemical hole burning linewidths: Observation of spectral diffusion at long times. Chem. Phys. Lett. 159, 1–6 (1989).

    Article  CAS  Google Scholar 

  14. Hu, P. & Walker, L.R. Spectral-diffusion decay in echo experiments. Phys. Rev. B 18, 1300–1305 (1978).

    Article  CAS  Google Scholar 

  15. Bai, Y.S. & Fayer, M.D. Time scales and optical dephasing measurements: Investigation of dynamics in complex systems. Phys. Rev. B 39, 11066–11084 (1989).

    Article  CAS  Google Scholar 

  16. Thorn-Leeson, D. & Wiersma, D.A. Real time observation of low-temperature protein motions. Phys. Rev. Lett. 74, 2138–2141 (1995).

    Article  CAS  Google Scholar 

  17. Shibata, Y., Kurita, A. & T Non-Lorentzian hole shape induced by spectral diffusion in H2-protoporphyrin substituted myoglobin in Spectral Hole-Burning and Related Spectroscopies: Science and Applications (Optical Society of America, Washington). 15, 80–83 (1994).

    Google Scholar 

  18. Kurita, A., Shibata, Y. & Kushida, T. Two-level systems in myoglobin probed by non-Lorentzian hole broadening in a temperature-cycling experiment. Phys. Rev. Lett. 74, 4349–4352 (1995).

    Article  CAS  Google Scholar 

  19. Meijers, H.C. & Wiersma, D.A. Low temperature dynamics in amorphous solids: A photon echo study. J. chem. Phys. 101, 6927–6943 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leeson, D., Wiersma, D. Looking into the energy landscape of myoglobin. Nat Struct Mol Biol 2, 848–851 (1995). https://doi.org/10.1038/nsb1095-848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb1095-848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing