Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solvent isotope effect and protein stability

Abstract

Here we present a comparative study of the stability of several proteins in H2O and D2O as a function of pH/pH*. We show that the substitution of D2O for H2O leads to an increase in the transition temperature and a decrease in the enthalpy of unfolding. The stability of the proteins, however, appears to be largely unchanged as a result of entropic compensation for the decrease in enthalpy. This enthalpy-entropy compensation is attributed to changes in hydration of proteins in D2O compared to H2O. Analysis of thermodynamic data for the transfer of model compounds from H2O to D2O shows that almost all the changes in the enthalpy of unfolding and in the protein-ligand interactions due to water isotopic substitution can be rationalized by changes in hydration of the buried non-polar groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eisenberg, D. & McLachlan, A.D. Solvation energy of protein folding and binding. Nature 319, 199–203 (1986).

    Article  CAS  Google Scholar 

  2. Dill, K.A. Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990).

    Article  CAS  Google Scholar 

  3. Pace, C.N. Contribution of the hydrophobic effect to globular protein stability. J. molec. Biol. 226, 29–35 (1992).

    Article  CAS  Google Scholar 

  4. Yang, A.S., Sharp, K.A. & Honig, B. Analysis of the heat capacity dependencies of protein folding. J. molec. Biol. 227, 889–900 (1992).

    Article  CAS  Google Scholar 

  5. Spolar, R.S. & Record, Jr., M.T. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994).

    Article  CAS  Google Scholar 

  6. Baldwin, R.L. Temperature dependence of the hydrophobic interaction in protein folding. Proc. natn. Acad. Sci. U.S.A. 83, 8069–8072 (1986).

    Article  CAS  Google Scholar 

  7. Privalov, P.L. & Gill, S.J. Stability of protein structure and hydrophobic interactions. Adv. Protein Chem. 39, 191–234 (1988).

    Article  CAS  Google Scholar 

  8. Ben-Naim, A. Solvent effects on protein association and protein folding. Biopolymers 29, 567–596 (1990).

    Article  CAS  Google Scholar 

  9. Makhatadze, G.I. & Privalov, P.L. Energetics of protein structure. Adv. Protein Chem. 47, 307–425 (1995).

    Article  CAS  Google Scholar 

  10. Nemethy, G. & Scheraga, H.A. Structure of water and hydrophobic bonding in proteins. IV. Thermodynamic properties of liquid deuterium oxide. J. chem. Phys. 41, 680–689 (1964).

    Article  CAS  Google Scholar 

  11. Marcus, Y. & Ben-Naim, A. A study of the structure of water and its dependence on solutes based on the isotope effects on solvation thermodynamics in water. J. chem. Phys. 83, 4744–4759 (1985).

    Article  CAS  Google Scholar 

  12. Arnett, E.M. & McKelvey, D.R. Solvent isotope effect on thermodynamics of nonreacting solutes. in Solute-Solvent Interactions, (J. F. Coetzee & C.D. Ritchie, Eds.) 343–398 (Marcel Dekker, New York & London; 1969).

    Google Scholar 

  13. Lumry, R. & Rajender, S. Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9, 1125–1227 (1970).

    Article  CAS  Google Scholar 

  14. Dahlberg, D.B. Aqueous solution structure as determined from thermodynamic parameters of transfer from water to heavy water. J. phys. Chem. 76, 2045–2050 (1972).

    Article  CAS  Google Scholar 

  15. Ben-Naim, A., Wilf, J. & Yaacobi, M. Hydrophobic interaction in light and heavy water. J. phys. Chem. 77, 95–102 (1975).

    Article  Google Scholar 

  16. Scharlin, P. & Battino, R. Solubility of 13 nonpolar gases in deuterium oxide at 15-45°C and 101. 325 kPa. J. Solution Chem. 21, 67–91 (1992).

    Article  CAS  Google Scholar 

  17. Kresheck, G.C., Schneider, H. & Scheraga, H.A. The effect of D2O on the thermal stability of proteins. Thermodynamic parameters of the transfer of model compounds from H2O to D2O. J. phys. Chem. 69, 3132–3144 (1965).

    Article  CAS  Google Scholar 

  18. Connelly, P.R., Thomson, J.A., Fitzgibbon, M.J., Bruzzese, F.J. Probing hydration contribution to the thermodynamics of ligand binding by proteins. Enthalpy and heat capacity changes of tacrolimus and rapamycin binding to FK506 binding protein in D20 and H20. Biochemistry 32, 5583–5590 (1993).

    Article  CAS  Google Scholar 

  19. Hallen, D., Nilsson, S.-O., Rothschild, W., Wadso, I. Enthalpies and heat capacities for n-alkan-1-ols in H2O and D2O. J. chem. Thermodynamics 18, 429–442 (1986).

    Article  CAS  Google Scholar 

  20. Chervenak, M.C. & Toone, E.J. A direct measure of the contribution of solvent reorganization to the enthalpy of ligand binding. J. Am. chem. Soc. 116, 10533–10539 (1994).

    Article  CAS  Google Scholar 

  21. Glasoe, P.K. & Long, F.A. Use of glass electrodes to measure acidities in deuterium oxide. J. phys. Chem. 64, 188–190 (1960).

    Article  CAS  Google Scholar 

  22. Bundi, A. & Wüthrich, K. 1H-NMR parameters of the common amino acid residues measured in aqueous solutions of the linear tripeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers 18, 285–297 (1979).

    Article  CAS  Google Scholar 

  23. Makhatadze, G.I. & Privalov, P.L. Protein interaction with urea and guanidinium chloride. A calorimetric study. J. molec. Biol. 226, 491–505 (1992).

    Article  CAS  Google Scholar 

  24. Makhatadze, G.I., Clore, G.M., Gronenborn, A.M. & Privalov, P.L. Thermodynamics of unfolding of all β-sheet protein interteukin-1 β. Biochemistry 33, 9327–9332 (1994).

    Article  CAS  Google Scholar 

  25. Lee, B.K. & Richards, F.M. The interpretation of protein structure: estimation of static accessibility. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  26. Chothia, C. The nature of accessible and buried surfaces in proteins. J. molec. Biol. 105, 1–14 (1976).

    Article  CAS  Google Scholar 

  27. Bernstein, F.C. et al. The Protein Data Bank: A computer-based archival file for macromolecular structures. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  28. Naismith, J.H. et al. Refined structure of concanavalin-A complex with α-methyl-D-mannopyranoside at 2.0 Å resolution and comparison with the saccaride free structure. Acta. crystallogr. Sect. D. 50, 847–852, (1994).

    Article  CAS  Google Scholar 

  29. van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science 252, 839–842 (1991).

    Article  CAS  Google Scholar 

  30. Privalov, P.L. & Makhatadze, G.I. Contribution of hydration and non-covalent interactions to the heat capacity effect on protein unfolding. J. molec. Biol. 224, 715–723 (1992).

    Article  CAS  Google Scholar 

  31. Connelly, P.R., et al., Enthalpy of hydrogen bond formation in a protein-ligand binding reaction. Proc. natn. Acad. Sci. U.S.A. 91, 1964–1968 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makhatadze, G., Clore, G. & Gronenborn, A. Solvent isotope effect and protein stability. Nat Struct Mol Biol 2, 852–855 (1995). https://doi.org/10.1038/nsb1095-852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb1095-852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing