Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperatively folded proteins in random sequence libraries

Abstract

The structural properties of proteins recovered from random sequence libraries can be used to investigate the relationship between folding and sequence information. Here, we show that helical proteins displaying cooperative thermal denaturation transitions can be easily recovered from a library containing 80-residue proteins predominantly composed of glutamine, leucine, and arginine, with an average hydophobicity level similar to that of natural proteins. The native structure of one of these proteins has a stability and oligomeric form similar to that of many natural proteins but differs in having no slowly exchanging amide hydrogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Matthews, B.W. Structural and genetic analysis of protein stability. A. Rev. Biochem. 62, 139–160 (1993).

    Article  CAS  Google Scholar 

  2. Reidhaar-Olson, J.F. & Sauer, R.T. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science 241, 53–57 (1988).

    Article  CAS  Google Scholar 

  3. Bowie, J.U. & Sauer, R.T. Identifying determinants of folding and activity for a protein of unknown structure. Proc. natn. Acad. Sci. U.S.A. 86, 2152–2156 (1989).

    Article  CAS  Google Scholar 

  4. Lim, W.A. & Sauer, R.T. Alternative packing arrangements in the hydrophobic core of λ repressor. Nature 339, 31–36 (1989).

    Article  CAS  Google Scholar 

  5. Coplen, L.J., Frieden, R.W. & Goldenberg, D.P. A genetic screen to identify variants of bovine pancreatic trypsin inhibitor with altered folding energetics. Proteins 7, 16–31 (1992).

    Article  Google Scholar 

  6. Kamtekar, S., Schiffer, J.M., Xiong, H., Babik, J.M. & Hecht, M.H. Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685 (1993).

    Article  CAS  Google Scholar 

  7. Davidson, A.R. & Sauer, R.T. Folded proteins occur frequently in libraries of random amino acid sequences. Proc. natn. Acad. Sci U.S.A. 91, 2146–2150 (1994).

    Article  CAS  Google Scholar 

  8. O'Neil, K.T., Hoess, R.H., Raleigh, D.P. & DeGrado, W.F. Thermodynamic genetics of folding of the B1 immunoglbulin-binding domain from streptococcal protein G. Proteins 21, 11–21 (1995).

    Article  CAS  Google Scholar 

  9. Uversky, V. Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry 32, 13288–13298 (1993).

    Article  CAS  Google Scholar 

  10. Privalov, P.L. & Gill, S.J. Stability of protein structure and hydrophobic interaction. Adv. Protein Chem. 39, 191–234 (1988).

    Article  CAS  Google Scholar 

  11. Creighton, T.E. Proteins: Structures and Molecular Properties (W. H. Freeman, New York, 1993).

    Google Scholar 

  12. Bai, Y., Milne, J.S., Mayne, L. & Englander, W.S. Protein stability parameters measured by hydrogen exchange. Proteins 20, 4–14 (1994).

    Article  CAS  Google Scholar 

  13. Peteranderl, R. & Nelson, H.C.M. Trimerization of the heat shock transcription factor by a triple-stranded a-helical coiled-coil. Biochemistry 31, 12272–12276 (1992).

    Article  CAS  Google Scholar 

  14. Lumb, K.J. & Kim, P.S. A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil. Biochemistry 34, 8642–8648 (1995).

    Article  CAS  Google Scholar 

  15. Handel, T.M., Williams, S.A. & Degrado, W.F. Metal ion-dependent modulation of the dynamics of a designed protein. Science 261, 879–885 (1993).

    Article  CAS  Google Scholar 

  16. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular proteins. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  17. Ptitsyn, O.B. The molten globule state. in Protein Folding (ed. Creighton, T.E.) 243–300 (W.H. Freeman, New York, 1992).

    Google Scholar 

  18. Filimonov, V.V. et al. Thermodynamic analysis of the chemotactic protein from Escherichia coli, CheY. Biochemistry 32, 12906–12921 (1993).

    Article  CAS  Google Scholar 

  19. Hagihara, Y., Tan, Y. & Goto, Y. Comparison of the conformational stability of the molten globule and native states of horse cytochrome c. J. molec. Biol. 237, 336–348 (1994).

    Article  CAS  Google Scholar 

  20. Carra, J.H., Anderson, E.A. & Privalov, P.L. Thermodynamics of staphylococcal nuclease denaturation. II. The A-state. Protein Sci. 3, 952–959 (1994).

    Article  CAS  Google Scholar 

  21. Hlodan, R. & Pain, R.H. Tumour necrosis factor is in equilibrium with a trimeric molten globule at low pH. FEBS Lett. 343, 256–260 (1994).

    Article  CAS  Google Scholar 

  22. Betz, S.F., Raleigh, D.P. & De Grado, W.F. De novo protein design: from molten globules to native-like states. Curr. Opin. struct. Biol. 3, 601–610 (1993).

    Article  CAS  Google Scholar 

  23. Tanaka, T., Kuroda, Y., Kimura, H., Kidokoro, S.-i. & Nakamura, H. Cooperative deformation of a de novo designed protein. Prot. Engng. 7, 969–976 (1994).

    Article  CAS  Google Scholar 

  24. Finkelstein, A.V. Implications of the random characteristics of protein sequences for their three-dimensional structure. Curr. Opin. struct. Biol. 4, 422–428 (1994).

    Article  CAS  Google Scholar 

  25. Oliphant, A.R., Nussbaum, A.L. & Struhl, K. Cloning of random-sequence oligodeoxynucleotides. Gene 44, 177–183 (1986).

    Article  CAS  Google Scholar 

  26. Hopp, T.P. et al. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6, 1204–1210 (1988).

    Article  CAS  Google Scholar 

  27. Parsell, D.A. & Sauer, R.T. Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev. 3, 1226–1232 (1989).

    Article  CAS  Google Scholar 

  28. Hochuli, E., Dobeli, H. & Schachter, A. New metal chelate adsorbent for proteins and peptides containing neighboring histidine residues. J. Chromatogr. 411, 177–184 (1987).

    Article  CAS  Google Scholar 

  29. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  30. Chen, Y.-H., Yang, J.T. & Martinez, H.M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11, 4120–4131 (1972).

    Article  CAS  Google Scholar 

  31. Johnson, M.L. & Frazier, S. Nonlinear least-squares analysis. Meth. Enzym. 117, 301–342 (1985).

    Article  CAS  Google Scholar 

  32. Brenstein, R.J. NONLIN for Macintosh (Robelko Software, Carbondale, IL, 1989).

    Google Scholar 

  33. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Computer-aided interpretation of analytical sedimetation data for proteins. in Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds Harding, S. E., Rowe, A. & Horton, J.) 90–125 (Royal Society of Chemistry, Cambridge, U. K. 1992).

    Google Scholar 

  34. Lee, J.C. & Timasheff, S.N. Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride. Biochemistry 13, 257–265 (1974).

    Article  CAS  Google Scholar 

  35. Jeng, M.-F. & Englander, W.E. Stable submolecular folding units in a non-compact form of cytochrome c. J. molec. Biol. 221, 1045–1061 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, A., Lumb, K. & Sauer, R. Cooperatively folded proteins in random sequence libraries. Nat Struct Mol Biol 2, 856–864 (1995). https://doi.org/10.1038/nsb1095-856

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb1095-856

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing