Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of the stability of a lysozyme molten globule

Abstract

Hydrogen exchange measurements on equine lysozyme show that amides in three of the four major helices of the native protein are significantly protected in a molten globule state formed at pH 2. The pattern of protection within the different helices, however, varies significantly. Examination of the pattern in the light of the native structure indicates that the side chains of the protected residues form a compact cluster within the core of the protein. We suggest that such a core is present in the molten globule state, indicating the existence of substantial native-like interactions between hydrophobic residues. The formation of clusters of this type during the early stages of folding could be crucial to directing polypeptide chains to their native structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ptitsyn, O.B. The molten globule state. in Protein Folding, (ed. Creighton, T.E.) 243–300 (Freeman, New York, 1992).

    Google Scholar 

  2. Kuwajima, K. The molten globule as a clue for understanding the folding and cooperativity of globular protein structures. Proteins Struct. Funct. Genet. 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  3. Baldwin, R.L. Pulsed H/D-exchange studies of folding intermediates. Curr. Opin. struct. Biol. 3, 84–91 (1993).

    Article  CAS  Google Scholar 

  4. Haynie, D.T. & Freire, E. Structural energetics of the molten globule. Proteins Struct. Funct. Genet. 16, 115–140 (1993).

    Article  CAS  Google Scholar 

  5. Dobson, C.M. Solid evidence for molten globules. Curr. Biol. 4, 636–640 (1994).

    Article  CAS  Google Scholar 

  6. Wolynes, P.G., Onuchic, J.N. & Thirumalai, D. Navigating the folding routes. Science 267, 1619–1620 (1995).

    Article  CAS  Google Scholar 

  7. Peng, Z.-y., Wu, L.C. & Kim, P.S. Local structural preferences in the α-lactalbumin molten globule. Biochemistry 34, 3248–3252 (1995).

    Article  CAS  Google Scholar 

  8. Dobson, C.M. Unfolded proteins, compact states and molten globules. Curr. Opin. struct. Biol. 2, 6–12 (1992).

    Article  CAS  Google Scholar 

  9. Baum, J., Dobson, C.M., Evans, P.A. & Hanley, C. Characterization of a partially folded protein by NMR methods: studies on the molten globule state of guinea pig α-lactalbumin. Biochemistry 28, 7–13 (1989).

    Article  CAS  Google Scholar 

  10. Jeng, M.-f., Englander, S.W., Elöve, G.A., Wand, A.J. & Roder, H. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry 29, 10433–10437 (1990).

    Article  CAS  Google Scholar 

  11. Hughson, F.M., Wright, P.E. & Baldwin, R.L. Structural characterisation of a partly folded apomyoglobin intermediate. Science 249, 1544–1548 (1990).

    Article  CAS  Google Scholar 

  12. Chyan, C.-L., Wormald, C., Dobson, C.M., Evans, P.A. & Baum, J. Structure and stability of the molten globule state of guinea-pig α-lactalbumin: a hydrogen exchange study. Biochemistry 32, 5681–5691 (1993).

    Article  CAS  Google Scholar 

  13. Morozova, L., Haezebrouck, P. & Van Cauwelaert, F. Stability of equine lysozyme. 1. Thermal unfolding behaviour. Biophys. Chem. 41, 185–191 (1991).

    Article  CAS  Google Scholar 

  14. Van Dael, H., Haezebrouck, P., Morozova, L., Arico-Muendel, C. & Dobson, C.M. Partially folded states of equine lysozyme. Structural characterisation and significance for protein folding. Biochemistry 32, 11886–11894 (1993).

    Article  CAS  Google Scholar 

  15. Radford, S.E., Dobson, C.M. & Evans, P.A. The folding of hen lysozyme: a complex process involving partially structured intermediates and multiple pathways. Nature 358, 302–307 (1992).

    Article  CAS  Google Scholar 

  16. Hooke, S.D., Eyles, S.J., Miranker, A., Radford, S.E., Robinson, C.V. & Dobson, C.M. Co-operative elements in protein folding monitored by electrospray ionization mass spectroscopy. J. Amer. chem. Soc. 117, 7548–7549 (1995).

    Article  CAS  Google Scholar 

  17. Hooke, S.D., Radford, S.E. & Dobson, C.M. The refolding of human lysozyme: a comparison with the structurally homologous hen lysozyme. Biochemistry 33, 5867–5876 (1994).

    Article  CAS  Google Scholar 

  18. Rooman, M.J. & Wodak, S.J. Extracting information on folding from the amino acid sequence: Consensus regions with preferred conformation in homologous proteins. Biochemistry 31, 10239–10249 (1992).

    Article  CAS  Google Scholar 

  19. Moult, J. & Unger, R. An analysis of protein folding pathways. Biochemistry 30, 3816–3824 (1991).

    Article  CAS  Google Scholar 

  20. Chelvanayagam, G., Reich, Z., Bringas, R. & Argos, P. Prediction of protein folding pathways. J. molec. Biol. 227, 901–916 (1992).

    Article  CAS  Google Scholar 

  21. Chan, H.S. & Dill, K.A. Polymer principles in protein structure and stability. A. Rev. Biophys. biophys. Chem. 20, 447–490 (1991).

    Article  CAS  Google Scholar 

  22. Evans, P.A., Topping, K.D., Woolfson, D.N., Dobson, C.M. Hydrophobic clustering in non-native states of a protein: interpretation of chemical shifts in NMR spectra of denatured states of lysozyme. Proteins Struct. Funct. Genet. 9, 248–266 (1991).

    Article  CAS  Google Scholar 

  23. Neri, D., Billeter, M., Wider, G. & Wüthrich, K. NMR determination of residual structure in a urea-denatured protein, the 434 repressor. Science 257, 1559–1563 (1992).

    Article  CAS  Google Scholar 

  24. Griko, Y. & Privalov, P.L. Thermodynamic puzzle of apomyoglobin unfolding. J. molec. Biol. 235, 1318–1325 (1994).

    Article  CAS  Google Scholar 

  25. Redfield, C., Smith, R.A.G. & Dobson, C.M. A partially unfolded state of a four helix bundle: interleukin-4 at low pH. Nature struct. Biol. 1, 23–29 (1994).

    Article  CAS  Google Scholar 

  26. Matouschek, A., Kellis, J.T., Jr., Serrano, L., Bycroft, M. & Fersht, A. Transient folding intermediates characterised by protein engineering. Nature 356, 440–445 (1990).

    Article  Google Scholar 

  27. Udgaonkar, J. & Baldwin, R.L. Nature of the early folding intermediate of ribonuclease A. Biochemistry 34, 4088–4096 (1995).

    Article  CAS  Google Scholar 

  28. Sali, A., Shakhnovich, E. & Karplus, M. How does a protein fold? Nature 369, 248–251 (1994).

    Article  CAS  Google Scholar 

  29. Bai, Y., Milne, J.S., Mayne, L. and Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins Struct. Func. Genet. 17, 75–86 (1993).

    Article  CAS  Google Scholar 

  30. Tsuge, H., Ago, H., Noma, M., Nitta, K., Sugai, S. and Miyano, M. Crystallographic studies of a calcium binding lysozyme from equine milk at 2.5Å resolution. J. Biochem. 111, 141–143 (1992).

    Article  CAS  Google Scholar 

  31. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallgr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozova, L., Haynie, D., Arico-Muendel, C. et al. Structural basis of the stability of a lysozyme molten globule. Nat Struct Mol Biol 2, 871–875 (1995). https://doi.org/10.1038/nsb1095-871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb1095-871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing