Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the γ–ɛ complex of ATP synthase

Abstract

ATP synthases (F1Fo-ATPases) use energy released by the movement of protons down a transmembrane electrochemical gradient to drive the synthesis of ATP, the universal biological energy currency. Proton flow through Fo drives rotation of a ring of c-subunits and a complex of the γ and ɛ-subunits, causing cyclical conformational changes in F1 that are required for catalysis. The crystal structure of a large portion of F1 has been resolved. However, the structure of the central portion of the enzyme, through which conformational changes in Fo are communicated to F1, has until now remained elusive. Here we report the crystal structure of a complex of the ɛ-subunit and the central domain of the γ-subunit refined at 2.1 Å resolution. The structure reveals how rotation of these subunits causes large conformational changes in F1, and thereby provides new insights into energy coupling between Fo and F1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural arrangement of γ′ and ɛ-subunits from E. coli ATP synthase.
Figure 2: Schematic representation of the composite model of ATP synthase.
Figure 3: Stereo view of the 2Fo − Fc electron density map at 2.1 Å resolution, which is contoured at 1.4 σ.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Senior, A.E. Annu. Rev. Biophys. Biophys. Chem. 19, 7– 41 (1990).

    Article  CAS  Google Scholar 

  2. Fillingame, R.H., Jones, P.C., Jiang, W., Valiyaveetil, F.I. & Dmitriev, O.Y. Biochim. Biophys. Acta 1365, 135–142 ( 1998)

    Article  CAS  Google Scholar 

  3. Boyer, P.D. Biochim. Biophys. Acta 1140, 215–250 (1993)

    Article  CAS  Google Scholar 

  4. Duncan, T.M., Bulygin, V.V., Zhou, Y., Hutcheon, M.L. & Cross, R.L. Proc. Natl. Acad. Sci. USA 92, 10964–10968 (1995).

    Article  CAS  Google Scholar 

  5. Sabbert, D., Engelbrecht, S. & Junge, W. Nature 381, 623– 625 (1996).

    Article  CAS  Google Scholar 

  6. Noji, H., Yasuda, R., Yoshida, M., & Kinosita, K., Jr. Nature 386, 299–302 ( 1997).

    Article  CAS  Google Scholar 

  7. Bulygin, V.V., Duncan, T.M. & Cross, R.L. J. Biol. Chem. 273, 31765– 31769 (1998)

    Article  CAS  Google Scholar 

  8. Kato-Yamada, Y., Noji, H., Yasuda, R., Kinosita, K. and Yoshida, M. J. Biol. Chem. 273, 19375–19377 (1998)

    Article  CAS  Google Scholar 

  9. Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Nature 370, 621–628 ( 1994).

    Article  CAS  Google Scholar 

  10. Bianchet, M.A., Hullihen, J., Pedersen, P.L. & Amzel, L.M. Proc. Natl. Acad. Sci. USA 95, 11065–11070 (1998).

    Article  CAS  Google Scholar 

  11. Hausrath, A.C., Grüber, G., Matthews, B.W. & Capaldi, R.A. Proc. Natl. Acad. Sci. 96, 13697 –13702 (1999).

    Article  CAS  Google Scholar 

  12. Wilkens, S., Dahlquist, F.W., McIntosh, L.P., Donaldson, L.W. & Capaldi, R.A. Nature Struct. Biol. 2, 961–967 ( 1995).

    Article  CAS  Google Scholar 

  13. Uhlin, U., Cox, G.B. & Guss, J.M. Structure 5, 1219– 1230 (1997).

    Article  CAS  Google Scholar 

  14. Dunn, S.D. J. Biol. Chem. 257, 7354–7359 (1982).

    CAS  PubMed  Google Scholar 

  15. Tang, C. & Capaldi, R.A. J. Biol. Chem. 271, 3018–3024 (1996).

    Article  CAS  Google Scholar 

  16. Xiong, H., Zhang, D. & Vik, S.B. Biochemistry 37, 16423– 16429 (1998).

    Article  CAS  Google Scholar 

  17. Stock, D., Leslie, A.G. & Walker, J.E. Science 286, 1700– 1705 (1999).

    Article  CAS  Google Scholar 

  18. Schulenberg, B. & Capaldi, R.A. J. Biol. Chem. 274, 28351–28355 ( 1999).

    Article  CAS  Google Scholar 

  19. Wilkens, S. & Capaldi, R.A. J. Biol. Chem. 273, 26645–26651 (1998).

    Article  CAS  Google Scholar 

  20. Mendel-Hartvig, J. & Capaldi, R.A. Biochemistry 30, 1278–1284 ( 1991).

    Article  CAS  Google Scholar 

  21. Weber, J., Dunn, S.D. & Senior, A.E. J. Biol. Chem. 274, 19124– 19128 (1999).

    Article  CAS  Google Scholar 

  22. Kuki, M., Noumi, T., Maeda, M., Amemura, A. & Futai, M. J. Biol. Chem. 263, 17437–17442 (1988).

    CAS  PubMed  Google Scholar 

  23. Wang, H. & Oster, G. Nature 396 , 279–282 (1998).

    Article  CAS  Google Scholar 

  24. Hermolin, J., Dmitriev, O.Y., Zhang, Y. & Fillingame, R.H. J. Biol. Chem. 274, 17011–17016 (1999).

    Article  CAS  Google Scholar 

  25. Watts, S. D., Tang, C. & Capaldi, R.A. J. Biol. Chem. 271, 28341– 28347 (1996).

    Article  CAS  Google Scholar 

  26. Schulenberg, B., Aggeler, R., Murray, J. & Capaldi, R.A. J. Biol. Chem. 274, 34233–34237 (1999).

    Article  CAS  Google Scholar 

  27. Watts, S.D. & Capaldi, R.A. J. Biol. Chem. 272, 15065–15068 (1997).

    Article  CAS  Google Scholar 

  28. Jones, T.A., Zou, J-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. , A 47, 110–119 ( 1991).

  29. Brunger, A.T. et al. Acta Crystallogr. D. 54, 905– 921 (1998).

    Article  CAS  Google Scholar 

  30. Laskowski, R.J., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–290 (1993).

    Article  CAS  Google Scholar 

  31. Dmitriev O.Y., Jones P.C. & Fillingame R.H., Proc .Natl. Acad. Sci. USA 96, 7785–7790 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Use of the APS was supported by the US Department of Energy, Basic Energy Sciences, Office of Science. Use of the BioCARS Sector 14 was supported by the National Institutes of Health, National Center for Research Resources. This research was supported by grants from the National Health and Medical Research Foundation (M.C.J.W.), University of Western Australia Medical Research Fellowship (A.J.W.R.) and The Raine Medical Research Foundation (M.C.J.W.). Travel to the APS was funded from a grant from the Australian Nuclear Science and Technology Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. J. Wilce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodgers, A., Wilce, M. Structure of the γ–ɛ complex of ATP synthase. Nat Struct Mol Biol 7, 1051–1054 (2000). https://doi.org/10.1038/80975

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/80975

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing