Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biochemical analysis of the transducin-phosphodiesterase interaction

Abstract

In vertebrate rod cells, the activated α-subunit of rod transducin interacts with the γ (regulatory) subunits of phosphodiesterase to disinhibit the catalytic subunits. A 22-amino acid long region of rod transducin involved in phosphodiesterase activation has recently been identified. We have used peptides from this region of rod transducin and from several other G protein α-subunits to study the nature and specificity of the G protein α-effector interaction. Although peptides derived from rod transducin, cone transducin and gustducin are similar, only the rod peptide is capable of activating rod phosphodiesterase. Using substituted peptides we have identified five residues on one exposed face of rod transducin as important to phosphodiesterase activation. These results disagree with previous models which propose that loop regions of rod transducin interact with phosphodiesterase γ

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Conklin, B.R. & Bourne, H.R. Structural elements of Gα subunits that interact with Gβγ, receptors, and effectors. Cell 73, 631–641 (1993).

    Article  CAS  Google Scholar 

  2. Lochrie, M.A. and Simon, M.I. G protein multiplicity in eukaryotic signal transduction systems. Biochemistry 27, 4957–4965 (1988).

    Article  CAS  Google Scholar 

  3. Wilkie, T.M. et al. Evolution of the mammalian G protein α subunit multigene family. Nature Genet. 1, 85–91 (1992).

    Article  CAS  Google Scholar 

  4. Dixon, R.A.F. et al. Cloning of the gene and cDNA for mammalian α-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79 (1986).

    Article  CAS  Google Scholar 

  5. Nathans, J. and Hogness, D.S. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34, 807–814 (1983).

    Article  CAS  Google Scholar 

  6. Nathans, J., Thomas, D. & Hogness, D.S. Molecular genetics of human color vision: the gene encoding blue, green and red pigments. Science 232, 193–202 (1986).

    Article  CAS  Google Scholar 

  7. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article  CAS  Google Scholar 

  8. Birnbaumer, L. G proteins in signal transduction. A. Rev. Pharmacol. Toxicol. 30, 675–705 (1990).

    Article  CAS  Google Scholar 

  9. Hamm, H.E., Deretic, D., Arendt, A., Hargrave, P.A., König, B. & Hofmann, K.P. Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. Science 241, 832–835 (1988).

    Article  CAS  Google Scholar 

  10. Conklin, B.R., Farfel, Z., Lustig, K.D., Julius, D. & Bourne, H.R. Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature 363, 274–276 (1993).

    Article  CAS  Google Scholar 

  11. Findlay, J.B.C. & Pappin, D.J.C. The opsin family of proteins. Biochem. J. 238, 625–642 (1985).

    Article  Google Scholar 

  12. König, B., Arendt, A., McDowell, J.H., Kahlert, M., Hargrave, P.A. & Hofmann, K.P. Three cytoplasmic loops of rhodopsin interact with transducin. Proc. natn. Acad. Sci. U.S.A. 86, 6878–6882 (1989).

    Article  Google Scholar 

  13. Rarick, H.M., Artemyev, N.O. & Hamm, H.E. A site on rod G protein α subunit that mediates effector activation. Science 256, 1031–1033 (1992).

    Article  CAS  Google Scholar 

  14. Berlot, C.H. & Bourne, H.R. Identification of effector-activating residues of Gsα . Cell 68, 911–922 (1992).

    Article  CAS  Google Scholar 

  15. Itoh, H. & Gilman, A.G. Expression & analysis of Gsα mutants with decreased ability to activate adenylycyclase. J. biol. Chem. 266, 10864–10871 (1991).

    Google Scholar 

  16. Stryer, L. Visual excitation and recovery. J. biol. Chem. 266, 10711–10714 (1991).

    CAS  Google Scholar 

  17. Hargrave, P.A. & McDonnell, J.H. Rhodopsin and phototransduction: a model system for G protein-linked receptors. FASEB J. 6, 2323–2331 (1992).

    Article  CAS  Google Scholar 

  18. Nathans, J. Rhodopsin: structure, function, and genetics. Biochemistry 31, 4923–4931 (1992).

    Article  CAS  Google Scholar 

  19. Oppert, B., Gonzalez, K., Hurt, D., Cunnick, J. & Takemoto, D. Retinal cyclic-GMP phosphodiesteraseγ-subunit: use of mutant synthetic peptides to define function. Biochem. biophys. Res. Commun. 181, 306–309 (1991).

    Article  CAS  Google Scholar 

  20. Gonzalez, K., Cunnick, J. & Takemoto, D. Retinal cyclic-GMP phosphodiesterase γ subunit: identification of functional residues in the inhibitory region. Biochem. biophys. Res. Commun. 181, 1094–1096 (1991).

    Article  CAS  Google Scholar 

  21. Brown, R.L. Functional regions of the inhibitory subunit of retinal rod cGMP phosphodiesterase identified by site-specific mutagenesis and fluorescence spectroscopy. Biochemistry 31, 5918–5925 (1992).

    Article  CAS  Google Scholar 

  22. Artemyev, N.O., Rarick, H.M., Mills, J.S., Skiba, N.P. & Hamm, H.E. Sites of interaction between rod G-protein α-subunit and cGMP-phosphodiesterase γ-subunit. J. biol. Chem. 267, 25067–25072 (1992).

    CAS  Google Scholar 

  23. Lipkin, V.M., Bondarenko, V.A., Zagranichny, V.E., Dobrynina, L.N., Muradov, K.G. & Natochin, M.Y. Site-directed mutagenesis of the cGMP phosphodiesterase a subunit from bovine rod outer segments: role of separate amino acid residues in the interaction with catalytic subunits and transducin α subunit. Biochim. biophys. Acta 1176, 250–256 (1993).

    Article  CAS  Google Scholar 

  24. Faurobert, E., Otto-Bruce, A., Chardin, P. & Chabre, M. Tryptophan W207 in transducin tα is the fluorescence sensor of the G protein activation switch and is involved in the effector binding. EMBO J. 12, 4191–4198 (1993).

    Article  CAS  Google Scholar 

  25. Sakmar, T.P. & Khorana, H.G. Total synthesis and expression of a gene for the α-subunit of bovine rod outer sement guanine nucleotide-binding protein (transducin). Nucleic Acids Res. 16, 6361–6372.

    Article  CAS  Google Scholar 

  26. Mumby, S.M., Heukeroth, R.L., Gordon, J.L. & Gilman, A.G. G-protein α-subunit expression, myristoylation, and membrane association in COS cells. Proc. natn. Acad. Sci. U.S.A. 87, 728–732 (1990).

    Article  CAS  Google Scholar 

  27. Noel, J.P., Hamm, H.E. & Sigler, P.B. The 2.2Å crystal structure of transducin-α complexed with GTPγS. Nature 366, 654–663 (1993).

    Article  CAS  Google Scholar 

  28. Roof, D.J., Applebury, M.L. & Sternweis, P.C. Relationships within the family of GTP-binding proteins isolated from bovine central nervous system. J. Biol. Chem., 260, 16242–16249 (1985).

    CAS  PubMed  Google Scholar 

  29. Gillespie, P.G. & Beavo, J.A. (1988) Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-sepharose chromatography. J. biol. Chem. 263, 8133–8141 1988).

    CAS  PubMed  Google Scholar 

  30. Lambright, D.G., Noel, J.P., Hamm, H.E. & Sigler, P.B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994).

    Article  CAS  Google Scholar 

  31. Yamazaki, A., Hayashi, F., Tasumi, M., Bitensky, M.W. & George, J.S. (1990) Interactions between the subunits of transducin and cyclic GMP phosphodiesterase in Rana catesbiana rod photoreceptors. J. Biol. Chem. 265, 11539–11548 (1990).

    CAS  PubMed  Google Scholar 

  32. Otto-Bruc, A., Antonny, B., Vuong, T.M., Chardin, P. & Chabre, M. Interaction between the retinal cyclic GMP phosphodiesterase inhibitor and transducin. Kinetics and affinity studies. Biochemistry 32, 8636–8645 (1993).

    Article  CAS  Google Scholar 

  33. Whiteway, M., Clark, K.L., Leberer, E., Dignard, P. & Thomas, D.Y. (1944) Genetic identification of residues involved in association of α and β G-protein subunits. Molec. cell. Biol. 14, 3223–3229 (1944)

    Article  Google Scholar 

  34. Thomas, T.C., Schmidt, C.J. & Neer, E.J. G protein α0 subunit: mutation of conserved cysteines identifies a subunit contact surface and alters GDP affinity. Proc. natn. Acad. Sci. U.S.A. 90, 10295–10298 (1993).

    Article  CAS  Google Scholar 

  35. McLaughlin, S.K., Mckinnon, P.J. & Margolskee, R.F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357, 563–569 (1992).

    Article  CAS  Google Scholar 

  36. Law, J.S. & Henkin, R.I. Taste bud adenosine-3′ 5′-monophosphate phosphodiesterase: activity, subcelluar distribution and kinetic parameters. Res. Comm. chem. pathol. Pharmacol. 38, 439–452 (1982).

    CAS  Google Scholar 

  37. Price, S. Phosphodiesterase in tongue epithelium: activation by bitter taste stimuli. Nature 241, 54–55 (1973).

    Article  CAS  Google Scholar 

  38. Spickofsky, N., McLaughlin, S.K., McKinnon, P.J. & Margolskee, R.F. Molecular cloning of taste transduction proteins. Chemical Senses 17, 701 (1992).

    Google Scholar 

  39. Francis, S.M. & Corbin, J.D. Purification of cGMP-binding protein phosphodiesterase from rat lung. Meths Enzymol. 159, 722–729(1988).

    Article  CAS  Google Scholar 

  40. Gillespie, P.G. & Beavo, J.A. Inhibition and stimulation of photoreceptor phosphodiesterases by dipyridamole and M & B 22,948. Molec. Pharmacol. 36, 773–781 (1989).

    CAS  Google Scholar 

  41. Baehr, W., Morita, E.A., Swanson, R.J. & Applebury, M.L. Characterization of bovine rod outer segment G-protein. J. biol. Chem. 257, 6452–6460 (1982).

    CAS  PubMed  Google Scholar 

  42. Ponder, J.W. and Richards, F.M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Molec. Biol. 193, 775–791 (1987).

    Article  CAS  Google Scholar 

  43. Wuthrich, K. NMR of Proteins and Nucleic Acids, (John Wiley & Sons, New York; 1986).

    Book  Google Scholar 

  44. Fry, D.C., Madison, V.S., Bolin, D.R., Greeley, D.N., Toome, W. & Wegrzynski, B.B. Solution structure of an analogue of vasoactive intestinal peptide as determined by two-dimensional NMR and circular dichroism spectroscopies and constrained molecular dynamics. Biochemistry 28, 2399–2409 (1989).

    Article  CAS  Google Scholar 

  45. Fry, D.C. et al. Solution structures of cyclic and dicyclic analogs of growth hormone releasing factor as determined by two-dimensional NMR and CD spectroscopies and constrained molecular dynamics. Biopolymers 32, 649–666 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spickofsky, N., Robichon, A., Danho, W. et al. Biochemical analysis of the transducin-phosphodiesterase interaction. Nat Struct Mol Biol 1, 771–781 (1994). https://doi.org/10.1038/nsb1194-771

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb1194-771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing