Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo design of integral membrane proteins

Abstract

We have designed integral membrane proteins with one, two and four hydrophobic transmembrane segments of highly simplified amino acid composition and with appropriately placed positively charged lysine residues intended to control the overall membrane orientation. When expressed in Escherichia coli, these model proteins insert efficiently into the inner membrane and adopt the predicted topologies. This demonstrates the feasibility of de novo design of multi-spanning integral membrane proteins, and opens up new possibilities for membrane protein engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lovejoy, B. et al. Crystal structure of a synthetic triple-stranded α-helical bundle Science 259, 1288–1293 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Kamtekar, S., Schiffer, J.M., Xiong, H., Babik, J.M. & Hecht, M.H. Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Hecht, M.H., Richardson, J.S., Richardson, D.C. & Ogden, R.C. De novo design, expression, and characterization of felix - A 4-helix bundle protein of native-like sequence. Science 249, 884–891 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Robertson, D.E. et al. Design and synthesis of multi-haem proteins. Nature 368, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Harbury, P.B., Zhang, T., Kim, P.S. & Alber, T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Yan, Y.B. & Erickson, B.W. Engineering of betabellin 14D: Disulfide-induced folding of a beta-sheet protein. Prot. Sci 3, 1069–1073 (1994).

    Article  CAS  Google Scholar 

  7. Quinn, T.P., Tweedy, N.B., Williams, R.W., Richardson, J.S. & Richardson, D.C. Betadoublet: De novo design, synthesis, and characterization of a β-sandwich protein. Proc. natn. Acad. Sci. U.S.A 91, 8747–8751 (1994).

    Article  CAS  Google Scholar 

  8. Hecht, M.H. De novo design of β-sheet proteins. Proc. natn. Acad. Sci. U.S.A. 91, 8729–8730 (1994).

    Article  CAS  Google Scholar 

  9. Cowan, S.W. & Rosenbusch, J.P. Folding pattern diversity of integral membrane proteins. Science 264, 914–916 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. von Heijne, G. & Manoil, C. Membrane proteins -from sequence to structure. Prot. Engng. 4, 109–112 (1990).

    Article  CAS  Google Scholar 

  11. von Heijne, G. Membrane proteins: from sequence to structure. A. Rev. Biophys. biomolec. Struct. 23, 167–192 (1994).

    Article  CAS  Google Scholar 

  12. Boyd, D. & Beckwith, J. The role of charged amino acids in the localization of secreted and membrane proteins. Cell 62, 1031–1033 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Dalbey, R.E. Positively charged residues are important determinants of membrane protein topology. Trends Biochem Sci. 15, 253–257 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Gafvelin, G. & von Heijne, G. Topological “frustration” in multi-spanning E. coli inner membrane proteins. Cell 77, 401–412 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Schatz, P.J. & Beckwith, J. Genetic analysis of protein export in Escherichia coli. A. Rev. Genet. 24, 215–248 (1990).

    Article  CAS  Google Scholar 

  16. Wickner, W., Driessen, A.J.M. & Hartl, F.U. The enzymology of protein translocation across the Escherichia coli plasma membrane. A. Rev. Biochem. 60, 101–124 (1991).

    Article  CAS  Google Scholar 

  17. Andersson, H. & von Heijne, G. Sec-dependent and sec-independent assembly of E. coli inner membrane proteins - the topological rules depend on chain length. EMBO J. 12, 683–691 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuhn, A. Alterations in the extracellular domain of M13 procoat protein make its membrane insertion dependent on secA and secY. E. J. Biochem. 177, 267–271 (1988).

    Article  CAS  Google Scholar 

  19. Wolfe, P.B., Wickner, W. & Goodman, J.M. Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. J. biol. Chem. 258, 12073–12080 (1983).

    CAS  PubMed  Google Scholar 

  20. von Heijne, G., Wickner, W. & Dalbey, R.E. The cytoplasmic domain of Escherichia coli leader peptidase is a “translocation poison: sequence”. Proc. natn. Acad. Sci. U.S.A. 85, 3363–3366 (1988).

    Article  CAS  Google Scholar 

  21. Oliver, D.B., Cabelli, R.J., Dolan, K.M. & Jarosik, G.R. Azide-resistant mutants of Escherichia coli alter the Sec A-protein, an azide-sensitive component of the protein export machinery. Proc. natn. Acad. Sci. U.S.A. 87, 8227–8231 (1990).

    Article  CAS  Google Scholar 

  22. Manoil, C. Analysis of membrane protein topology using alkaline phosphatase and β-galactosidase gene fusions. Meths. Cell Biol. 34, 61–75 (1991).

    Article  CAS  Google Scholar 

  23. von Heijne, G. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341, 456–458 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Johnston, S., Lee, J.H. & Ray, D.S. High-level expression of M13 gene II protein from an inducible polycistronic messenger RNA. Gene 34, 137–145 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Dalbey, R.E. & Wickner, W. The role of the polar, carboxyl-terminal domain of Escherichia coli leader peptidase in its translocation across the plasma membrane. J. biol. Chem. 261, 13844–13849 (1986).

    CAS  PubMed  Google Scholar 

  26. Dalbey, R.E. & Wickner, W. Leader peptidase of Escherichia coli: critical role of a small domain in membrane assembly. Science 235, 783–787 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Gutierrez, C. & Devedjian, J.C. A plasmid facilitating in vitro construction of phoA gene fusions in Escherichia coli. Nucleic Acids Res. 17, 3999 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kunkel, T.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  CAS  Google Scholar 

  29. Geisselsoder, J., Witney, F. & Yuckenberg, P. Efficient site-directed in vitro mutagenesis. BioTechniques 5, 786–791 (1987).

    CAS  Google Scholar 

  30. Calamia, J. & Manoil, C. Membrane protein spanning segments as export signals. J. molec Biol. 224, 539–543 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Michaelis, S., Inouye, H., Oliver, D. & Beckwith, J. Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli. J. Bacteriol. 154, 366–374 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. San Millan, J.L., Boyd, D., Dalbey, R., Wickner, W. & Beckwith, J. Use of PhoA fusions to study the topology of the Escherichia coli innermembrane protein leader peptidase. J. Bacteriol. 171, 5536–5541 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gennity, J.M., Kim, H. & Inouye, M. Structural determinants in addition to the amino-terminal sorting sequence influence membrane localization of Escherichia-Coli lipoproteins. J. Bacteriol. 174 2095–2101 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitley, P., Nilsson, I. & Heijne, G. De novo design of integral membrane proteins. Nat Struct Mol Biol 1, 858–862 (1994). https://doi.org/10.1038/nsb1294-858

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb1294-858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing