Abstract
Direct methods of crystal structure solution are greatly facilitated in centrosymmetric space groups where the complexity of the phase-problem is reduced. For most peptides and proteins, crystallization in a centrosymmetric arrangement is precluded by an intrinsic dissymmetry due to the constituent chiral amino acid residues. The synthetic accessibility of peptide sequences containing amino acids of either chirality offers the possibility for co crystallization of racemic crystals. We report here the first use of such an approach for the de novo structure determination of a medium-sized molecule, trichogin A IV, which is a constituent of a fungal lipopeptaibol mixture possessing membrane-modifying properties of biological interest.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Moffat, A.S. New methods make mid-sized molecules easier to solve. Science 256, 309–310 (1992).
Karle, J. & Hauptman, H. A theory of phase determination for the four types of non- entrosymmetric space groups 1P2221, 2P221, 3P121, 3P22. Acta crystallogr 9, 635–651 (1956).
Shiono, M. & Woolfson, M.M. Direct-space methods in phase extension and phase determination. I. Low-density elimination. Acta crystallogr. A48, 451–456 (1992).
DeTitta, G.T., Weeks, C.M., Thuman, P., Miller, R. & Hauptman, H. Structure solution by minimal-function phase refinement and Fourierfiltering. I. Theoretical Basis. Acta crystallogr. A50, 203–210 (1994).
Weeks, C.M., DeTitta, G.T., Hauptman, H.A., Thuman, P. & Miller, R. Structure solution by minimal-function phase refinement and Fourier filtering. II. Implementation and Applications. Acta crystallogr. A50, 210–220 (1994).
Langs, D.A. Three-dimensional structure at 0.86Å of the uncomplexed form of the transmembrane ion channel peptide Gramicidin A. Science 241, 188–191 (1988).
Glover, I., Haneef, I., Pitts, J., Wood, S., Moss, T., Tickle, I. & Blundell, T. Conformational flexibility in a small globular hormone: X-ray analysis of avian pancreatic polypeptide at 0.98 Å resolution. Biopolymers 22, 293–304 (1983).
Karle, I.L., Karle, J., Mastropaolo, D., Camerman, A. & Camerman, N. [Leu 5] enkephalin: Four cocrystallizing conformers with extended backbones that form an antiparallel β-sheet. Acta. crystallogr. B39, 625–637 (1983).
Mackay, A.L. Crystal enigma. Nature 342, 133 (1989).
Jacques, J., Collet, A. & Wilen, S.H. in Enantiomers, racemates and resolutions (John Wiley & Sons, New York; 1981).
Brock, C.P., Schweizer, W.B. & Dunitz, J.C. On the validity of Wallach's rule: On the density and stability of racemic crystals compared with their chiral counterparts. J. Am. chem. Soc. 113, 9811–9820 (1992).
Zawadke, L.E. & Berg, J.E. The structure of a centrosymmetric protein crystal. Prot. Struct. Funct. Genet. 16, 301–305 (1993).
Doi, M. et al. Structural characteristics of enantiomorphic DNA:Crystal analysis of racemates of the d(CGCGCG) duplex. J. Am. chem. Soc. 115, 10432–10433 (1993).
Doi, M., Ishibe, A., Shinozaki, H., Urata, H., Inoue, M. & Ishida, T. Conserved and novel structural characteristics of enantiomorphic Leu-enkephalin. Int. J. Peptide Prot. Res. 43, 325–331 (1994).
Benedetti, E. et al. Peptaibol antibiotics: A study on the helical structure of the 2–9 sequence of Emerimicins III and IV. Proc. natn. Acad. Sci. U.S.A. 79, 7951–7954 (1982).
Bruckner, H., Cussin, C. & Kripp, T. Detection of new peptaibol antibiotics (mycotoxins) in species and strains of the fungal genus Trichoderma . in Peptides: chemistry and biology, 650–652 (ed. Marshall, G.R. ESCOM Science Publishers, Leiden, The Netherlands; 1988).
Pandey, R.C., Cook, J.C., Jr & Rinehart, K.L. High resolution and field desorption mass spectrometry studies and revised structures of Alamethicins I and II. J. Am. chem. Soc. 99, 8469–8483 (1977).
Fox, R.O. & Richards, F.M. A voltage-gated ion channel model inferred from the crystal structure of Alamethicin at 1.5Å resolution. Nature, 300, 325–330 (1982).
Rinehart, K.L., et al. Structures of eleven zervamicin and two emerimicin peptide antibiotics studied by fast atom bombardment mass spectrometry. J. Am. chem. Soc. 103, 6517–6520 (1981).
Karle, I.L., Flippen-Anderson, J.L., Agarwalla, S. & Balaram, P. Crystal structure of [Leu1] Zervamicin, a membrane ion channel peptide: Implications for gating mechanisms. Proc. natn. Acad. Sci. U.S.A. 88, 5307–5311 (1991).
Pandey, R.C., Meng, H., Cook, J.C., Jr. & Rinehart, K.L., Jr. Structure of antiamoebin I from high resolution field desorption and gas chromatographic mass spectrometry studies. J. Am. chem. Soc. 99, 5203–5205 (1977).
Das, K.M., Ragothama, S., Balaram, P., Membrane channel forming polypeptides. Molecular conformation and mitochondrial uncoupling activity of Antiamoebin, an α-aminoisobutyric acid containing peptide. Biochemistry 25, 7110–7117 (1986).
Auvin-Guette, C., Rebuffat, S., Prigent, Y. & Bodo, B. Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum . J. Am. chem. Soc. 114, 2170–2174 (1992).
Karle, I.L., Sukumar, M. & Balaram, P. Parallel packing of α-helices in crystals of the Zervamicin IIA analog Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe. 2H2O. Proc. natn. Acad. Sci. U.S.A. 83, 9284–9288 (1986).
Bosch, R., Jung, G., Schmitt, H. & Winter, W. Crystal structure of the α-helical undecapeptide Boc-L-Ala-Aib-Ala-Aib-Ala-Glu(OBzl)-Ala-Aib-Ala-Aib-Ala-OMe. Biopolymers 26, 961–978 (1985).
Presta, L.G. & Rose, G.D. Helix signals in proteins. Science 240, 1632–1641 (1988).
Zhou, H.X., Lyu, P.C., Wemmer, D.E. & Kallenbach, N.R. Structure of a C-terminal α-helix cap in a synthetic peptide. J. Am. chem. Soc. 116, 1139–1140 (1994).
Toniolo, C. & Benedetti, E. The polypeptide 310-helix. Trends biochem. Sci. 16, 350–353 (1991).
Nagaraj, R. & Balaram, P. Alamethicin, a transmembrane channel. Accs. chem. Res. 14, 356–362 (1981).
Karle, I.L. Folding, aggregation and molecular recognition in peptides. Acta crystallogr. B48, 341–356 (1992).
Bodo, B. et al. Synthesis and membrane-modifying properties of analogues of the lipopeptaibol Trichogin A IV with variable Nα-acyl chain length. in Peptides 1994. (ed. Maia, H.L.S.) (ESCOM Science Publisher, Leiden, The Netherlands, 1995).
Menestrina, G., Voges, K.-P., Jung, G. & Boheim, G. Voltage-dependent channel formation by rods of helical polypeptides. J. memb. Biol. 93, 111–132 (1986).
Cosson, P. & Bonifacino, J.S. Role of transmembrane domain interactions in the assembly of class II MHC molecules. Science 258, 659–662 (1992).
Walker, N. & Stuart, D. An empirical method for correcting diffractometer data for absorption effects. Acta crystallogr. A39, 158–166 (1983).
Sheldrick, G.M. in Crystallographic Computing 3 eds Sheldrick, G.M., Kruger, C. & Goddard, R. 175–189 (Oxford University Press: England, 1985).
Enraf Nonius Structure Determination Package. (Enraf Nonius, Delft, The Netherlands, 1979).
IUPAC-IUB Commission on Biochemical Nomenclature, Abbreviations and symbols for the description of the conformation of polypeptide chains. Biochemistry 9, 3471–3479 (1970).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Toniolo, C., Peggion, C., Crisma, M. et al. Structure determination of racemic trichogin A IV using centrosymmetric crystals. Nat Struct Mol Biol 1, 908–914 (1994). https://doi.org/10.1038/nsb1294-908
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/nsb1294-908
This article is cited by
-
Effects of Aib residues insertion on the structural–functional properties of the frog skin-derived peptide esculentin-1a(1–21)NH2
Amino Acids (2017)
-
The rational search for selective anticancer derivatives of the peptide Trichogin GA IV: a multi-technique biophysical approach
Scientific Reports (2016)
-
Antimicrobial lipopeptaibol trichogin GA IV: role of the three Aib residues on conformation and bioactivity
Amino Acids (2012)
-
The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects
Biophysical Reviews (2012)