Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

HIV-1 A-rich RNA loop mimics the tRNA anticodon structure

Abstract

Interaction of HIV-1 genomic RNA and human tRNA Lys 3 initiates viral reverse transcription. An adenosine-rich (A-rich) loop in HIV RNA mediates complex formation between tRNA and viral RNA. We have determined the structure of an A-rich loop oligonucleotide using nuclear magnetic resonance spectroscopy. The loop structure is stabilized by a non-canonical G–A pair and a U-turn motif, which leads to stacking of the conserved adenosines. The structure has similarity to the tRNA anticodon structure, and suggests possible mechanisms for its role in initiation of reverse transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Sequence and secondary structure of the A-rich loop of HIV-1 RNA.
Figure 2: a, Stereo view of the heavy-atom superposition of final 21 structures of the A-rich loop.
Figure 3: Comparison of a, A-rich loop and b, tRNA anticodon loop of yeast tRNAPhe.

Similar content being viewed by others

References

  1. Emerman, M. & Malim, M.H. Science 280, 1880–1884 (1998).

    Article  CAS  Google Scholar 

  2. Puglisi, J.D., Chen, L., Frankel, A.D. & Williamson, J.R. Proc. Natl Acad. Sci. USA 90, 3680–3684 (1993).

    Article  CAS  Google Scholar 

  3. Battiste, J.L. et al. Science 273, 1547–1551 (1996).

    Article  CAS  Google Scholar 

  4. De Guzman, R.N. et al. Science 279, 384–388 (1998).

    Article  CAS  Google Scholar 

  5. Arts, E.J. & Le Grice, S.F.J. Prog. Nucl. Acids. Res. Mol. Biol. 58, 339–393 (1998).

    Article  CAS  Google Scholar 

  6. Jacobo-Molina, A. et al. Proc. Natl. Acad. Sci. USA 90, 6320–6324 (1993).

    Article  CAS  Google Scholar 

  7. Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. & Steitz, T.A. Science 256, 1783–1790 (1992).

    Article  CAS  Google Scholar 

  8. Isel, C., Ehresmann, C., Keith, G., Ehresmann, B. & Marquet, R. J. Mol. Biol. 247, 236–250 (1995).

    Article  CAS  Google Scholar 

  9. Isel, C., Keith, G., Ehresmann, B., Ehresmann, C. & Marquet, R. Nucl.Acids. Res. 26, 1198–1204 (1998).

    Article  CAS  Google Scholar 

  10. Wakefield, J.K., Wolf, A.G. & Morrow, C.D. J. Virol. 69, 6021–6029 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, S.H. & Sussman, J.L. Nature 260, 645–646 (1976).

    Article  CAS  Google Scholar 

  12. Saenger, W. Principles of nucleic acid structure (Springer-Verlag, Berlin; 1984).

    Book  Google Scholar 

  13. Jucker, F.M. & Pardi, A. RNA 1, 219–222 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stallings, S.C. & Moore, P.B. Structure 5, 1173–1185 (1997).

    Article  CAS  Google Scholar 

  15. Wedekind, J.E. & McKay, D.B. Ann. Rev. Biophys. Biomol. Struct. 27, 475–502 (1998).

    Article  CAS  Google Scholar 

  16. Haasnoot, C.A.G. et al. J. Biomol. Struct. Dyn. 3, 843–857 (1986).

    Article  CAS  Google Scholar 

  17. Cate, J. et al. Science 273, 1696–1699 (1996).

    Article  CAS  Google Scholar 

  18. Pleij, C.W.A., Rietveld, K. & Bosch, L. Nucleic Acids Res. 13, 1717–1731 (1985).

    Article  CAS  Google Scholar 

  19. Romby, P., Giegé, R., Houssier, C. & Grosjean, H. J. Mol. Biol. 184, 107–118 (1985).

    Article  CAS  Google Scholar 

  20. Isel, C., Marquet, R., Keith, G., Ehresmann, C. & Ehresmann, B. J. Biol. Chem. 268, 25269–25272 (1993).

    CAS  PubMed  Google Scholar 

  21. Houssier, C., Degée, P., Nicoghosian, K. & Grosjean, H. J. Biomol. Struct. Dyn. 5, 1259–1266 (1988).

    Article  CAS  Google Scholar 

  22. Barat, C. et al. EMBO J. 8, 3279–3285 (1989).

    Article  CAS  Google Scholar 

  23. Oude Essink, B.B., Das, A.T. & Berkhout, B. J. Biol. Chem. 270, 23867–23874 (1995).

    Article  CAS  Google Scholar 

  24. Puglisi, J.D. & Wyatt, J.R. Meth. Enz. 261, 323–350 (1995).

    Article  CAS  Google Scholar 

  25. Batey, R.T., Battiste, J.L. & Williamson, J.R. Meth. Enz. 261, 300–323 (1995).

    Article  CAS  Google Scholar 

  26. Marino, J.P. et al. J. Am. Chem. Soc. 116, 6472–6473 (1994).

    Article  CAS  Google Scholar 

  27. Sklenár, V. & Bax, A. J. Am. Chem. Soc. 109, 7525–7526 (1987).

    Article  Google Scholar 

  28. Marino, J.P. et al. J. Biomol. NMR 5, 87–92 (1995).

    Article  CAS  Google Scholar 

  29. Smallcombe, S.H. J. Am. Chem. Soc. 115, 4776–4785 (1993).

    Article  CAS  Google Scholar 

  30. Fourmy, D., Yoshizawa, S. & Puglisi, J.D. J. Mol. Biol. 277, 333–345 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Elson for preparation of RNAs, S. Blanchard for preparation of labeled nucleotides and D. McKay for reading the manuscript. Supported by NIH Program Project grant in Structural Biology of AIDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Puglisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puglisi, E., Puglisi, J. HIV-1 A-rich RNA loop mimics the tRNA anticodon structure. Nat Struct Mol Biol 5, 1033–1036 (1998). https://doi.org/10.1038/4141

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/4141

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing