Abstract
Lysyl-tRNA can be synthesized by both a class I (LysRS-I) and a class II (LysRS-II) lysyl-tRNA synthetase. The crystal structure of LysRS-I from Pyrococcus horikoshii at 2.6 Å resolution reveals extensive similarity with glutamyl-tRNA synthetase (GluRS). A comparison of the structures of LysRS-I and LysRS-II in complex with lysine shows that both enzymes use similar strategies for substrate recognition within unrelated active site topologies. A docking model based upon the GluRS–tRNA complex suggests how LysRS-I and LysRS-II can recognize the same molecular determinants in tRNALys, as shown by biochemical results, while approaching the acceptor helix of the tRNA from opposite sides.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Ibba, M. & Söll, D. Annu. Rev. Biochem. 69, 617–650 (2000).
Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Nature 347, 203–206 (1990).
Cusack, S. Nature Struct. Biol. 2, 824–831 (1995).
Woese, C.R., Olsen, G. J., Ibba, M. & Söll, D. Microbiol. Mol. Biol. Rev. 64, 202–236 (2000).
Chihade, J.W., Brown, J.R., Schimmel, P.R. & Ribas de Pouplana, L. Proc. Natl. Acad. Sci. USA 97, 12153–12157 (2000).
Ibba, M., Becker, H.D., Stathopoulos, C., Tumbula, D.L. & Söll, D. Trends Biochem. Sci. 25, 311–316 (2000).
Bult, C.J. et al. Science 273, 1058–1073 (1996).
Smith, D.R.. et al. J. Bacteriol. 179, 7135–7155 (1997).
Ibba, M. et al. Science 278, 1119–1122 (1997).
Ibba, M., Bono, J.L., Rosa, P.A. & Söll, D. Proc. Natl. Acad. Sci. USA 94, 14383–14388 (1997).
Prodom release 2001.1 (http://protein.toulouse.inra.fr/prodom/doc/prodom.html).
Ibba, M. et al. Proc. Natl. Acad. Sci. USA 96, 418–423 (1999).
Onesti, S. et al. Biochemistry 39, 12853–12861 (2000).
Cusack, S., Yaremchuk, A. & Tukalo, M. EMBO J. 15, 6321–6334 (1996).
Sugiura, I. et al. Structure 8, 197–208 (2000).
Nureki, O. et al. Science 24, 578–582 (1998).
Fukai, S. et al. Cell 103, 793–803 (2000).
Cusack, S., Yaremchuk, A. & Tukalo, M. EMBO J. 19, 2351–2361 (2000).
Liu, J. et al. J. Biol. Chem. 270, 15162–15169 (1995).
Nureki, O. et al. Science 267, 1958–1965 (1995).
Sekine, S., Nureki, O., Shimada, A., Vassylyev, D.G. & Yokoyama, S. Nature Struct. Biol. 8, 203–206 (2001).
Ribas de Pouplana, L. & Schimmel, P. Cell 104, 191–193 (2001).
Delagoutte, B., Moras, D. & Cavarelli, J. EMBO J. 19, 5599–5610 (2000).
Sekine, S. et al. J. Mol. Biol. 256, 685–700 (1996).
Commans, S., Lazard, M., Delort, F., Blanquet, S. & Plateau, P. J. Mol. Biol. 278, 801–813 (1998).
McClain, W.H., Foss, K., Jenkins, R.A. & Schneider, J. Proc. Natl. Acad. Sci. USA 87, 9260–9264 (1990).
Tamura, K., Himeno, H., Asahara, H., Hasegawa, T. & Shimizu, M. Nucleic Acids Res. 20, 2335–2339 (1992).
Ribas de Pouplana, L. & Schimmel, P. Trends Biochem. Sci. 26, 591–596 (2001).
Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).
Weeks, C.M. & Miller, R. J. Appl. Crystallogr. 32, 120–124 (1999).
de La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).
Abrahams, J.P. & Leslie, A.G.W. Acta Crystallogr. D 52, 30–42 (1996).
Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).
Adams, P.D., Pannu, N.S., Read, R.J. & Brünger, A.T. Proc. Natl. Acad. Sci. USA 94, 5018–5023 (1997).
Acknowledgements
Supported in part by Grants-in-Aid for Science Research on Priority Areas to S.Y. and O.N. from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and to D.S. from the National Institute of General Medical Sciences. We are greatly indebted to M. Kawamoto (JASRI) for his help in data collection at Spring-8. We also thank L. Ribas de Pouplana for his helpful discussion on the sterically compatible docking of two LysRS families on tRNALys.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Terada, T., Nureki, O., Ishitani, R. et al. Functional convergence of two lysyl-tRNA synthetases with unrelated topologies. Nat Struct Mol Biol 9, 257–262 (2002). https://doi.org/10.1038/nsb777
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nsb777
This article is cited by
-
Genetic incorporation of d-lysine into diketoreductase in Escherichia coli cells
Amino Acids (2012)
-
The Phylogenomic Roots of Modern Biochemistry: Origins of Proteins, Cofactors and Protein Biosynthesis
Journal of Molecular Evolution (2012)
-
New functions of aminoacyl-tRNA synthetases beyond translation
Nature Reviews Molecular Cell Biology (2010)
-
Ten reasons to exclude viruses from the tree of life
Nature Reviews Microbiology (2009)
-
Specificity of Phage Display Selected Peptides for Modified Anticodon Stem and Loop Domains of tRNA
The Protein Journal (2007)