Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modeling and experiment yields the structure of acireductone dioxygenase from Klebsiella pneumoniae

Abstract

Here we report the structure of acireductone dioxygenase (ARD), the first determined for a new family of metalloenzymes. ARD represents a branch point in the methionine salvage pathway leading from methylthioadenosine to methionine and has been shown to catalyze different reactions depending on the type of metal ion bound in the active site. The solution structure of nickel-containing ARD (Ni-ARD) was determined using NMR methods. X-ray absorption spectroscopy, assignment of hyperfine shifted NMR resonances and conserved domain homology were used to model the metal-binding site because of the paramagnetism of the bound Ni2+. Although there is no structure in the Protein Data Bank within 3 Å r.m.s deviation of that of Ni-ARD, the enzyme active site is located in a conserved double-stranded b-helix domain. Furthermore, the proposed Ni-ARD active site shows significant post-facto structural homology to the active sites of several metalloenzymes in the cupin superfamily.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Relevant sequence alignments for modeling of the Ni-ARD active site.
Figure 3: Comparison of homologous residues in jack bean canavalin and Ni-ARD.
Figure 4: Structure of Ni-ARD.
Figure 5: Active site of Ni-ARD, showing conserved acidic residues in orange, conserved basic residues in cyan and conserved aromatic residues (and backbone) in purple.
Figure 6: Proposed mechanisms for ARD (Ni-type) and ARD′ (Fe-type) catalysis of acireductone oxidation, with rationale for 1,2 (ARD) versus 1,3 (ARD′) activation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Al-Lazikani, B., Jung, J., Xiang, Z.X. & Honig, B. Protein structure prediction. Curr. Opin. Chem. Biol. 5, 51–56 (2001).

    Article  CAS  Google Scholar 

  2. Ko, T.P., Day, J. & Mcpherson, A. The refined structure of canavalin from jack bean in two crystal forms at 2. 1 and 2.0 Å resolution. Acta Crystallogr. D 56, 411–420 (2000).

    Article  CAS  Google Scholar 

  3. Dunwell, J.M., Culham, A., Carter, C.E., Sosa-Aguirre, C.R. & Goodenough, P.W. Evolution of functional diversity in the cupin superfamily. Trends Biochem. Sci. 26, 740–746 (2001).

    Article  CAS  Google Scholar 

  4. Al-Mjeni, F., Ju, T., Pochapsky, T.C. & Maroney, M.J. XAS investigation of the structure and function of Ni in acireductone dioxygenase. Biochemistry 41, 6761–6769 (2002).

    Article  CAS  Google Scholar 

  5. Anand, R., Dorrestein, P.C., Kinsland, C., Begley, T.P. & Ealick, S.E. Structure of oxalate decarboxylase from Bacillus subtilis at 1.75 Å resolution. Biochemistry 41, 7659–7669 (2002).

    Article  CAS  Google Scholar 

  6. Woo, E.J., Dunwell, J.M., Goodenough, P.W., Marvier, A.C. & Pickersgill, R.W. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nature Struct. Biol. 7, 1036–1040 (2000).

    Article  CAS  Google Scholar 

  7. Wray, J.W. & Abeles, R.H. A bacterial enzyme that catalyzes formation of carbon-monoxide. J. Biol. Chem. 268, 21466–21469 (1993).

    CAS  PubMed  Google Scholar 

  8. Dai, Y., Wensink, P.C. & Abeles, R.H. One protein, two enzymes. J. Biol. Chem. 274, 1193–1195 (1999).

    Article  CAS  Google Scholar 

  9. Kestell, P. in Biological Interactions of Sulfur Compounds. (ed. Mitchell, S.) 190–196 (Taylor & Francis, London; 1996).

    Google Scholar 

  10. Balakrishnan, R., Frohlich, M., Rahaim, P.T., Backman, K. & Yocum, R.R. Cloning and sequence of the gene encoding enzyme E1 from the methionine salvage pathway of Klebsiella oxytoca. J. Biol. Chem. 268, 24792–24795 (1993).

    CAS  PubMed  Google Scholar 

  11. Myers, R.W., Wray, J.W., Fish, S. & Abeles, R.H. Purification and characterization of an enzyme involved in oxidative carbon-carbon bond cleavage reactions in the methionine salvage pathway of Klebsiella pneumoniae. J. Biol. Chem. 268, 24785–24791 (1993).

    CAS  PubMed  Google Scholar 

  12. Wray, J.W. & Abeles, R.H. The methionine salvage pathway in Klebsiella pneumoniae and rat liver — identification and characterization of 2 novel dioxygenases. J. Biol. Chem. 270, 3147–3153 (1995).

    Article  CAS  Google Scholar 

  13. Dai, Y., Pochapsky, T.C. & Abeles, R.H. Mechanistic studies of two dioxygenases in the methionine salvage pathway of Klebsiella pneumoniae. Biochemistry 40, 6379–6387 (2001).

    Article  CAS  Google Scholar 

  14. Dai, Y. Subcloning, expression, characterization and mechanistic studies of two dioxygenases in the methionine pathways. Ph.D. thesis, Brandeis Univ. (1998).

  15. Mo, H.P., Dai, Y., Pochapsky, S.S. & Pochapsky, T.C. 1H, 13C and 15N NMR assignments for a carbon monoxide generating metalloenzyme from Klebsiella pneumoniae. J. Biomol. NMR 14, 287–288 (1999).

    Article  CAS  Google Scholar 

  16. Marchler-Bauer, A. et al. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30, 281–283 (2002).

    Article  CAS  Google Scholar 

  17. Altschul, S. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  18. Pochapsky, T.C. & Gopen, Q. A chromatographic approach to the determination of relative free energies of interaction between hydrophobic and amphiphilic amino acid side chains. Protein Sci. 1, 786–795 (1992).

    Article  CAS  Google Scholar 

  19. De Araujo, A.F.P., Pochapsky, T.C. & Joughin, B. Thermodynamics of interactions between amino acid side chains: experimental differentiation of aromatic-aromatic, aromatic- aliphatic, and aliphatic-aliphatic side-chain interactions in water. Biophys. J. 76, 2319–2328 (1999).

    Article  CAS  Google Scholar 

  20. Christendat, D. et al. Crystal structure of DTDP-4-keto-5-deoxy-D-hexulose 3,5-epimerase from Methanobacterium thermoautotrophicum complexed with DTDP. J. Biol. Chem. 275, 24608–24612 (2000).

    Article  CAS  Google Scholar 

  21. Gibrat, J.-F., Madej, T. & Bryant, S.H. Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6, 377–385 (1996).

    Article  CAS  Google Scholar 

  22. Madej, T., Gibrat, J.-F. & Bryant, S.H. Threading a database of protein cores. Proteins 23, 356–369 (1995).

    Article  CAS  Google Scholar 

  23. Gane, P.J., Dunwell, J.M. & Warwicker, J. Modeling based on the structure of vicilins predicts a histidine cluster in the active site of oxalate oxidase. J. Mol. Evol. 46, 488–493 (1998).

    Article  CAS  Google Scholar 

  24. Pochapsky, T.C., Ye, X.M., Ratnaswamy, G. & Lyons, T.A. An NMR-derived model for the solution structure of oxidized putidaredoxin, a 2Fe, 2S ferredoxin from Pseudomonas. Biochemistry 33, 6424–6432 (1994).

    Article  CAS  Google Scholar 

  25. Pochapsky, T.C., Jain, N.U., Kuti, M., Lyons, T.A. & Heymont, J. A refined model for the solution structure of oxidized putidaredoxin. Biochemistry 38, 4681–4690 (1999).

    Article  CAS  Google Scholar 

  26. Muhandiram, D.R., Farrow, N.A., Xu, G.Y., Smallcombe, S.H. & Kay, L.E. A gradient 13C NOESY-HSQC experiment for recording NOESY spectra of 13C-labeled proteins dissolved in H2O. J. Magn. Reson. B 102, 317–321 (1993).

    Article  CAS  Google Scholar 

  27. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. & Bax, A. 3-dimensional heteronuclear NMR of 15N-labeled proteins. J. Am. Chem. Soc. 111, 1515–1517 (1989).

    Article  CAS  Google Scholar 

  28. Bax, A. & Pochapsky, S.S. Optimized recording of heteronuclear multidimensional NMR spectra using pulsed field gradients. J. Magn. Reson. 99, 638–643 (1992).

    CAS  Google Scholar 

  29. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of 3-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms — circumventing problems associated with folding. FEBS Lett. 239, 129–136 (1988).

    Article  CAS  Google Scholar 

  30. Kuszewski, J. & Clore, G.M. Sources of and solutions to problems in the refinement of protein NMR structures against torsion angle potentials of mean force. J. Magn. Reson. 146, 249–254 (2000).

    Article  CAS  Google Scholar 

  31. Kuszewski, J., Gronenborn, A.M. & Clore, G.M. Improvements and extensions in the conformational database potential for the refinement of NMR and X-ray structures of proteins and nucleic acids. J. Magn. Reson. 125, 171–177 (1997).

    Article  CAS  Google Scholar 

  32. Kuszewski, J., Gronenborn, A.M., & Clore, G.M. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Protein Sci. 5, 1067–1080 (1996).

    Article  CAS  Google Scholar 

  33. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  34. Yeh, C.T., Lai, H.Y., Chen, T.C., Chu, C.M. & Liaw, Y.F. Identification of a hepatic factor capable of supporting hepatitis C virus replication in a nonpermissive cell line. J. Virology 75, 11017–11024 (2001).

    Article  CAS  Google Scholar 

  35. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  36. Kraulis, P.J. Molscript — a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  37. Kelly, G.P., Muskett, F.W. & Whitford, D. 3D J-Resolved HSQC, a novel approach to measuring 3J(HN-Hα) application to paramagnetic proteins. J. Magn. Reson. B 113, 88–90 (1996).

    Article  CAS  Google Scholar 

  38. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  39. Laskowski, R.A., Rullmann, J.A.C., Macarthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Public Health Service. The 600 MHz NMR spectrometer used was purchased via a grant from the National Science Foundation (T.C.P.). The authors thank G. Wagner (Harvard Medical School) for access to his 750 MHz NMR spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Pochapsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pochapsky, T., Pochapsky, S., Ju, T. et al. Modeling and experiment yields the structure of acireductone dioxygenase from Klebsiella pneumoniae. Nat Struct Mol Biol 9, 966–972 (2002). https://doi.org/10.1038/nsb863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing