Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional inactivation of a transcriptional corepressor by a signaling kinase

Abstract

The C-terminal binding protein 1 (CtBP) is a ubiquitous corepressor linking the recruitment of DNA- and histone-modifying proteins to sequence-specific DNA-binding proteins and facilitating gene regulation during development and oncogenesis. We describe here the binding, phosphorylation and functional regulation of CtBP by the p21-activated kinase 1 (Pak1). Pak1 phosphorylates CtBP selectively on Ser158 within a putative regulatory loop, triggering CtBP cellular redistribution and blocking CtBP corepressor functions. A S158A substitution in CtBP or Pak1 knockdown by short interference RNA blocked CtBP phosphorylation, redistribution and attenuation of CtBP corepressor functions in reporter and chromatin assays. In the presence of NADH, Pak1 superphosphorylates CtBP and inhibits CtBP dehydrogenase activity, suggesting that preferential phosphorylation of active CtBP may alter secondary structures and influence both enzymatic and corepressor functions. Pak1 regulation of CtBP represents a new model of corepressor regulation whereby cellular signaling cascades may influence gene expression in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pak1 interaction with CtBP1.
Figure 2: Pak1 interaction and phosphorylation of CtBP.
Figure 3: Pak1-mediated CtBP phosphorylation.
Figure 4: Pak1 regulates subcellular localization and transregulation function of CtBP.
Figure 5: Pak1 modulates CtBP corepressor activity.
Figure 6: NADH influence on Pak1 regulation of CtBP functions.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Schaeper, U. et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc. Natl. Acad. Sci. USA 92, 10467–10471 (1995).

    Article  CAS  Google Scholar 

  2. Boyd, J.M. et al. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 12, 469–478 (1993).

    Article  CAS  Google Scholar 

  3. Kumar, V. et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol. Cell 10, 857–869 (2002).

    Article  CAS  Google Scholar 

  4. Chinnadurai, G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell 9, 213–224 (2002).

    Article  CAS  Google Scholar 

  5. Sewalt, R.G., Gunster, M.J., van der Vlag, J., Satjin, D.P.E. & Otte, A.P. C-terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol. Cell. Biol. 19, 777–787 (1999).

    Article  CAS  Google Scholar 

  6. Schaeper, U., Subramanian, T., Lim, L., Boyd, J.M. & Chinnadurai, G. Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. J. Biol. Chem. 273, 8549–8552 (1998).

    Article  CAS  Google Scholar 

  7. Yu, X. & Baer, R. Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor. J. Biol. Chem. 275, 18541–18549 (2000).

    Article  CAS  Google Scholar 

  8. Meloni, A.R., Smith, E.J. & Nevins, J.R. A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc. Natl. Acad. Sci. USA 96, 9574–9579 (1999).

    Article  CAS  Google Scholar 

  9. Koipally, J. & Georgopoulos, K. Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J. Biol. Chem. 275, 19594–19602 (2000).

    Article  CAS  Google Scholar 

  10. Kumar, R. & Vadlamudi, R. Emerging functions of p21-activated kinases in human cancer cells. J. Cell Physiol. 193, 133–144 (2002).

    Article  CAS  Google Scholar 

  11. Adam, L. et al. Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. J. Biol. Chem. 273, 28238–28246 (1998).

    Article  CAS  Google Scholar 

  12. Adam, L., Vadlamudi, R.K., Mandal, M., Chernoff, J. & Kumar, R. Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J. Biol. Chem. 275, 12041–12050 (2000).

    Article  CAS  Google Scholar 

  13. Vadlamudi, R.K. et al. Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J. Biol. Chem. 275, 36238–36244 (2000).

    Article  CAS  Google Scholar 

  14. Bagheri-Yarmand, R. et al. Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. J. Biol. Chem. 276, 29403–29409 (2001).

    Article  CAS  Google Scholar 

  15. Thiel, D.A. et al. Cell cycle-regulated phosphorylation of p21-activated kinase 1. Curr. Biol. 12, 1227–1232 (2002).

    Article  CAS  Google Scholar 

  16. Banerjee, M., Worth, D., Prowse, D.M. & Nikolic, M. Pak1 phosphorylation on T212 affects microtubules in cells undergoing mitosis Curr. Biol. 12, 1233–1239 (2002).

    Article  CAS  Google Scholar 

  17. Li, F. et al. p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep. 3, 767–773 (2002).

    Article  CAS  Google Scholar 

  18. Yablonski, D., Kane, L.P., Qian, D. & Weiss, A. A Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J. 17, 5647–5657 (1998).

    Article  CAS  Google Scholar 

  19. Wang, R.A. et al. p21-activated kinase-1 phosphorylates and transactivates estrogen receptor-α and promotes hyperplasia in mammary epithelium. EMBO J. 21, 5437–5447 (2002).

    Article  CAS  Google Scholar 

  20. Zhang, Q., Piston, D.W. & Goodman, R.H. Regulation of corepressor function by nuclear NADH. Science 295, 1895–1897 (2002).

    CAS  PubMed  Google Scholar 

  21. Mazumdar, A. et al. Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat. Cell Biol. 3, 30–37 (2001).

    Article  CAS  Google Scholar 

  22. Weigert, R. et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402, 429–433 (1999).

    Article  CAS  Google Scholar 

  23. Kagey, M.H., Melhuish, T.A. & Wotton, D. The Polycomb protein Pc2 is a SUMO E3. Cell 113, 127–137 (2003).

    Article  CAS  Google Scholar 

  24. Lin, X. et al. Opposed regulation of corepressor CtBP by SUMOylation and PDZ Binding. Mol. Cell 11, 1389–1396 (2003).

    Article  CAS  Google Scholar 

  25. Vadlamudi, R.K. et al. Filamin is essential for p21-activated kinase 1-mediated actin cytoskeletal assembly. Nat. Cell Biol. 4, 681–690 (2002).

    Article  CAS  Google Scholar 

  26. Barnes, C.J. et al. Heregulin induces expression, ATPase activity, and nuclear localization of G3BP, a Ras signaling component, in human breast tumors. Cancer Res. 62, 1251–1255 (2002).

    CAS  PubMed  Google Scholar 

  27. Kumar, R. et al. A naturally occurring MTA1 variant sequesters estrogen receptor in the cytoplasm. Nature 418, 654–657 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Chinnadurai for providing a CtBP antibody, J. Chernoff for the Pak1 constructs, K. Georgopoulos for the Flag-CtBP constructs and critical reading of this manuscript, E. Fearon for the pGL2-E-cadherin promoter luciferase reporter, A. Hall for the V12 CDC42 construct, V. Kumar and A. Aggarwal for helpful discussion, and M.-C. Hung for the E1A vector. This work was supported by the US National Institutes of Health grants (R.K.) and in part by an M.D. Anderson Cancer Center Institutional Research Award (C.J.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, C., Vadlamudi, R., Mishra, S. et al. Functional inactivation of a transcriptional corepressor by a signaling kinase. Nat Struct Mol Biol 10, 622–628 (2003). https://doi.org/10.1038/nsb957

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb957

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing