Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supramolecular SNARE assembly precedes hemifusion in SNARE-mediated membrane fusion

Abstract

Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex facilitates intracellular membrane fusion. A single SNARE complex is thought to be insufficient; multiple copies of SNARE complexes must work cooperatively. However, the mechanism by which such a higher-order SNARE protein structure is assembled is unknown. EPR and fluorescence analyses show that at least three copies of target-membrane SNARE proteins self-assemble through the interaction between the transmembrane domains (TMDs), and this multimeric structure serves as scaffolding for trans-SNARE assembly. SNARE core formation in solution induces oligomerization of the TMDs of vesicle-associated SNAREs in the apposing membrane, transiently forming a supramolecular protein structure spanning two membranes. This higher-order protein intermediate evolves, by involving lipid molecules, to the hemifusion state. Hemifusion is subsequently followed by distal leaflet mixing and formation of the cis-SNARE complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determination of stoichiometry of the Sso1pHT TMD oligomer using EPR.
Figure 2: Fluorescence detection of SNARE assembly at different locations.
Figure 3: Fluorescence lipid-mixing assay.
Figure 4: Kinetic comparison of various fluorescence assays.
Figure 5: A mechanistic model for SNARE assembly and membrane fusion.

Similar content being viewed by others

References

  1. Ungar, D. & Hughson, F.M. SNARE protein structure and function. Annu. Rev. Cell Dev. Biol. 19, 493–517 (2003).

    Article  CAS  Google Scholar 

  2. Brunger, A.T. Structural insights into the molecular mechanism of calcium-dependent vesicle–membrane fusion. Curr. Opin. Struct. Biol. 11, 163–173 (2001).

    Article  CAS  Google Scholar 

  3. Jahn, R., Lang, T. & Sudhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  Google Scholar 

  4. Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  5. Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 (1998).

    Article  CAS  Google Scholar 

  6. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  7. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  Google Scholar 

  8. Lin, R.C. & Scheller, R.H. Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087–1094 (1997).

    Article  CAS  Google Scholar 

  9. Katz, L., Hanson, P.I., Heuser, J.E. & Brennwald, P. Genetic and morphological analyses reveal a critical interaction between the C-termini of two SNARE proteins and a parallel four helical arrangement for the exocytic SNARE complex. EMBO J. 17, 6200–6209 (1998).

    Article  CAS  Google Scholar 

  10. Antonin, W., Fasshauer, D., Becker, S., Jahn, R. & Schneider, T.R. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat. Struct. Biol. 9, 107–111 (2002).

    Article  CAS  Google Scholar 

  11. Strop, P., Kaiser, S.E., Vrljic, M. & Brunger, A.T. The structure of the yeast plasma membrane SNARE complex reveals destabilizing water filled cavities. J Biol. Chem. 283, 1113–1119 (2008).

    Article  CAS  Google Scholar 

  12. Hua, Y. & Scheller, R.H. Three SNARE complexes cooperate to mediate membrane fusion. Proc. Natl. Acad. Sci. USA 98, 8065–8070 (2001).

    Article  CAS  Google Scholar 

  13. Otto, H., Hanson, P.I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl. Acad. Sci. USA 94, 6197–6201 (1997).

    Article  CAS  Google Scholar 

  14. Rickman, C., Hu, K., Carroll, J. & Davletov, B. Self-assembly of SNARE fusion proteins into star-shaped oligomers. Biochem. J. 388, 75–79 (2005).

    Article  CAS  Google Scholar 

  15. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994).

    Article  CAS  Google Scholar 

  16. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    Article  CAS  Google Scholar 

  17. Chernomordik, L.V. & Kozlov, M.M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207 (2003).

    Article  CAS  Google Scholar 

  18. Langosch, D., Hofmann, M. & Ungermann, C. The role of transmembrane domains in membrane fusion. Cell. Mol. Life Sci. 64, 850–864 (2007).

    Article  CAS  Google Scholar 

  19. Bowen, M.E., Engelman, D.M. & Brunger, A.T. Mutational analysis of synaptobrevin transmembrane domain oligomerization. Biochemistry 41, 15861–15866 (2002).

    Article  CAS  Google Scholar 

  20. Laage, R., Rohde, J., Brosig, B. & Langosch, D. A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins. J. Biol. Chem. 275, 17481–17487 (2000).

    Article  CAS  Google Scholar 

  21. Han, X., Wang, C.T., Bai, J., Chapman, E.R. & Jackson, M.B. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304, 289–292 (2004).

    Article  CAS  Google Scholar 

  22. Margittai, M., Otto, H. & Jahn, R. A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains. FEBS Lett. 446, 40–44 (1999).

    Article  CAS  Google Scholar 

  23. Chow, R.H., von Ruden, L. & Neher, E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60–63 (1992).

    Article  CAS  Google Scholar 

  24. Wang, P., Wang, C.T., Bai, J., Jackson, M.B. & Chapman, E.R. Mutations in the effector binding loops in the C2A and C2B domains of synaptotagmin I disrupt exocytosis in a nonadditive manner. J. Biol. Chem. 278, 47030–47037 (2003).

    Article  CAS  Google Scholar 

  25. Yoon, T.Y., Okumus, B., Zhang, F., Shin, Y.K. & Ha, T. Multiple intermediates in SNARE-induced membrane fusion. Proc. Natl. Acad. Sci. USA 103, 19731–19736 (2006).

    Article  CAS  Google Scholar 

  26. Abdulreda, M.H., Bhalla, A., Chapman, E.R. & Moy, V.T. Atomic force microscope spectroscopy reveals a hemifusion intermediate during soluble N-ethylmaleimide-sensitive factor-attachment protein receptors-mediated membrane fusion. Biophys. J. 94, 648–655 (2008).

    Article  CAS  Google Scholar 

  27. Liu, T., Wang, T., Chapman, E. & Weisshaar, J. Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. Biophys. J. 94, 1303–1314 (2008).

    Article  CAS  Google Scholar 

  28. Xu, Y., Zhang, F., Su, Z., McNew, J.A. & Shin, Y.K. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 12, 417–422 (2005).

    Article  CAS  Google Scholar 

  29. Lu, X., Zhang, F., McNew, J.A. & Shin, Y.K. Membrane fusion induced by neuronal SNAREs transits through hemifusion. J. Biol. Chem. 280, 30538–30541 (2005).

    Article  CAS  Google Scholar 

  30. Reese, C., Heise, F. & Mayer, A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436, 410–414 (2005).

    Article  CAS  Google Scholar 

  31. Wong, J.L., Koppel, D.E., Cowan, A.E. & Wessel, G.M. Membrane hemifusion is a stable intermediate of exocytosis. Dev. Cell 12, 653–659 (2007).

    Article  CAS  Google Scholar 

  32. Hofmann, M.W. et al. Self-interaction of a SNARE transmembrane domain promotes the hemifusion-to-fusion transition. J. Mol. Biol. 364, 1048–1060 (2006).

    Article  CAS  Google Scholar 

  33. Giraudo, C.G. et al. SNAREs can promote complete fusion and hemifusion as alternative outcomes. J. Cell Biol. 170, 249–260 (2005).

    Article  CAS  Google Scholar 

  34. Zampighi, G.A. et al. Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. Biophys. J. 91, 2910–2918 (2006).

    Article  CAS  Google Scholar 

  35. Monck, J.R. & Fernandez, J.M. The exocytotic fusion pore and neurotransmitter release. Neuron 12, 707–716 (1994).

    Article  CAS  Google Scholar 

  36. Mayer, A. What drives membrane fusion in eukaryotes? Trends Biochem. Sci. 26, 717–723 (2001).

    Article  CAS  Google Scholar 

  37. Jackson, M.B. & Chapman, E.R. Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu. Rev. Biophys. Biomol. Struct. 35, 135–160 (2006).

    Article  CAS  Google Scholar 

  38. Lindau, M. & Almers, W. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr. Opin. Cell Biol. 7, 509–517 (1995).

    Article  CAS  Google Scholar 

  39. Jackson, M.B. In search of the fusion pore of exocytosis. Biophys. Chem. 126, 201–208 (2007).

    Article  CAS  Google Scholar 

  40. Zhang, Y. & Shin, Y.K. Transmembrane organization of yeast syntaxin-analogue Sso1p. Biochemistry 45, 4173–4181 (2006).

    Article  CAS  Google Scholar 

  41. Meers, P., Ali, S., Erukulla, R. & Janoff, A.S. Novel inner monolayer fusion assays reveal differential monolayer mixing associated with cation-dependent membrane fusion. Biochim. Biophys. Acta 1467, 227–243 (2000).

    Article  CAS  Google Scholar 

  42. Li, F. et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14, 890–896 (2007).

    Article  CAS  Google Scholar 

  43. Tokumaru, H. et al. SNARE complex oligomerization by synaphin/complexin is essential for synaptic vesicle exocytosis. Cell 104, 421–432 (2001).

    Article  CAS  Google Scholar 

  44. Yersin, A. et al. Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proc. Natl. Acad. Sci. USA 100, 8736–8741 (2003).

    Article  CAS  Google Scholar 

  45. Nazarov, P.V., Koehorst, R.B., Vos, W.L., Apanasovich, V.V. & Hemminga, M.A. FRET study of membrane proteins: determination of the tilt and orientation of the N-terminal domain of M13 major coat protein. Biophys. J. 92, 1296–1305 (2007).

    Article  CAS  Google Scholar 

  46. Zhuang, X. et al. Fluorescence quenching: a tool for single-molecule protein-folding study. Proc. Natl. Acad. Sci. USA 97, 14241–14244 (2000).

    Article  CAS  Google Scholar 

  47. Ha, T. & Xu, J. Photodestruction intermediates probed by an adjacent reporter molecule. Phys. Rev. Lett. 90, 223002 (2003).

    Article  Google Scholar 

  48. Chen, Y., Xu, Y., Zhang, F. & Shin, Y.K. Constitutive versus regulated SNARE assembly: a structural basis. EMBO J. 23, 681–689 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

X.L. performed the fluorescence assay; Y.Z. performed the EPR analysis. Y.-K.S. designed the experiment and wrote the paper.

Corresponding author

Correspondence to Yeon-Kyun Shin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 and Supplementary Table 1 (PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Zhang, Y. & Shin, YK. Supramolecular SNARE assembly precedes hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 15, 700–706 (2008). https://doi.org/10.1038/nsmb.1433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb.1433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing