Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin

Abstract

Mg-ADP release is considered to be a crucial process for the regulation and motility of kinesin. To gain insight into the structural basis of this process, we solved the atomic structures of kinesin superfamily protein-1A (KIF1A) during and after Mg2+ release. On the basis of new structural and mutagenesis data, we propose a model mechanism for microtubule activation of Mg-ADP release from KIF1A. In our model, a specific interaction between loop L7 of KIF1A and β-tubulin reconfigures the KIF1A active site by shifting the relative positions of switches I and II. This leads to the sequential release of a group of water molecules that sits over the Mg2+ in the active site, followed by Mg2+ and finally the ADP. We further propose that this set of events is linked to a strain-dependent docking of the neck linker to the motor core, which produces a two-step power stroke.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibitory effect of Mg2+ on basal KIF1A ATPase activity and its reversal by microtubules.
Figure 2: The overall conformational change of KIF1A during Mg2+ release.
Figure 3: Conformational change of switch I to open the nucleotide binding pocket.
Figure 4: Microtubule-activating pathway of Mg-ADP release.
Figure 5: Sequential docking of the neck linker and the return movement of the microtubule binding interface switch II.
Figure 6: Three-dimensional rotation of switch II rearranges the microtubule binding surface of KIF1A.
Figure 7: Phenotypes of the neck linker mutants.
Figure 8: Schema to illustrate the 'two-door system' of the nucleotide binding pocket of kinesin.
Figure 9: Structure-based model of the gating behavior of dimeric kinesin.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201–214 (2005).

    Article  CAS  Google Scholar 

  2. Endow, S.A. & Barker, D.S. Processive and nonprocessive models of kinesin movement. Annu. Rev. Physiol. 65, 161–175 (2003).

    Article  CAS  Google Scholar 

  3. Cross, R.A. The kinetic mechanism of kinesin. Trends Biochem. Sci. 29, 301–309 (2004).

    Article  CAS  Google Scholar 

  4. Block, S.M. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995 (2007).

    Article  CAS  Google Scholar 

  5. Hirokawa, N. & Noda, Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88, 1089–1118 (2008).

    Article  CAS  Google Scholar 

  6. Hackney, D.D. Kinesin ATPase: rate-limiting ADP release. Proc. Natl. Acad. Sci. USA 85, 6314–6318 (1988).

    Article  CAS  Google Scholar 

  7. Gilbert, S.P., Webb, M.R., Brune, M. & Johnson, K.A. Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671–676 (1995).

    Article  CAS  Google Scholar 

  8. Song, Y.H. & Mandelkow, E. Recombinant kinesin motor domain binds to β-tubulin and decorates microtubules with a B surface lattice. Proc. Natl. Acad. Sci. USA 90, 1671–1675 (1993).

    Article  CAS  Google Scholar 

  9. Harrison, B.C. et al. Decoration of the microtubule surface by one kinesin head per tubulin heterodimer. Nature 362, 73–75 (1993).

    Article  CAS  Google Scholar 

  10. Kuznetsov, S.A. & Gelfand, V.I. Bovine brain kinesin is a microtubule-activated ATPase. Proc. Natl. Acad. Sci. USA 83, 8530–8534 (1986).

    Article  CAS  Google Scholar 

  11. Little, M. & Seehaus, T. Comparative analysis of tubulin sequences. Comp. Biochem. Physiol. B 90, 655–670 (1988).

    Article  CAS  Google Scholar 

  12. Nogales, E. & Wang, H.W. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr. Opin. Struct. Biol. 16, 221–229 (2006).

    Article  CAS  Google Scholar 

  13. Hackney, D.D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl. Acad. Sci. USA 91, 6865–6869 (1994).

    Article  CAS  Google Scholar 

  14. Schnitzer, M.J., Visscher, K. & Block, S.M. Force production by single kinesin motors. Nat. Cell Biol. 2, 718–723 (2000).

    Article  CAS  Google Scholar 

  15. Okada, Y., Higuchi, H. & Hirokawa, N. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature 424, 574–577 (2003).

    Article  CAS  Google Scholar 

  16. Rosenfeld, S.S., Fordyce, P.M., Jefferson, G.M., King, P.H. & Block, S.M. Stepping and stretching. How kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550–18556 (2003).

    Article  CAS  Google Scholar 

  17. Klumpp, L.M., Hoenger, A. & Gilbert, S.P. Kinesin's second step. Proc. Natl. Acad. Sci. USA 101, 3444–3449 (2004).

    Article  CAS  Google Scholar 

  18. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  Google Scholar 

  19. Vale, R.D. & Milligan, R.A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  Google Scholar 

  20. Vale, R.D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol. 135, 291–302 (1996).

    Article  CAS  Google Scholar 

  21. Cheng, J.Q., Jiang, W. & Hackney, D.D. Interaction of mant-adenosine nucleotides and magnesium with kinesin. Biochemistry 37, 5288–5295 (1998).

    Article  CAS  Google Scholar 

  22. Romani, A.M. & Scarpa, A. Regulation of cellular magnesium. Front. Biosci. 5, D720–D734 (2000).

    Article  CAS  Google Scholar 

  23. Zhang, B., Zhang, Y., Wang, Z. & Zheng, Y. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J. Biol. Chem. 275, 25299–25307 (2000).

    Article  CAS  Google Scholar 

  24. Rosenfeld, S.S., Houdusse, A. & Sweeney, H.L. Magnesium regulates ADP dissociation from myosin V. J. Biol. Chem. 280, 6072–6079 (2005).

    Article  CAS  Google Scholar 

  25. Vetter, I.R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  Google Scholar 

  26. Erickson, J.W. & Cerione, R.A. Structural elements, mechanism, and evolutionary convergence of Rho protein-guanine nucleotide exchange factor complexes. Biochemistry 43, 837–842 (2004).

    Article  CAS  Google Scholar 

  27. Rossman, K.L., Der, C.J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167–180 (2005).

    Article  CAS  Google Scholar 

  28. Muller, J., Marx, A., Sack, S., Song, Y.H. & Mandelkow, E. The structure of the nucleotide-binding site of kinesin. Biol. Chem. 380, 981–992 (1999).

    Article  CAS  Google Scholar 

  29. Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001).

    Article  CAS  Google Scholar 

  30. Nitta, R., Kikkawa, M., Okada, Y. & Hirokawa, N. KIF1A alternately uses two loops to bind microtubules. Science 305, 678–683 (2004).

    Article  CAS  Google Scholar 

  31. Yun, M., Zhang, X., Park, C.G., Park, H.W. & Endow, S.A. A structural pathway for activation of the kinesin motor ATPase. EMBO J. 20, 2611–2618 (2001).

    Article  CAS  Google Scholar 

  32. Sindelar, C.V. & Downing, K.H. The beginning of kinesin's force-generating cycle visualized at 9- resolution. J. Cell Biol. 177, 377–385 (2007).

    Article  CAS  Google Scholar 

  33. Lowe, J., Li, H., Downing, K.H. & Nogales, E. Refined structure of αβ-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001).

    Article  CAS  Google Scholar 

  34. Kikkawa, M., Okada, Y. & Hirokawa, N. 15 Å resolution model of the monomeric kinesin motor, KIF1A. Cell 100, 241–252 (2000).

    Article  CAS  Google Scholar 

  35. Kikkawa, M. & Hirokawa, N. High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J. 25, 4187–4194 (2006).

    Article  CAS  Google Scholar 

  36. Ogawa, T., Nitta, R., Okada, Y. & Hirokawa, N. A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116, 591–602 (2004).

    Article  CAS  Google Scholar 

  37. Hirose, K., Akimaru, E., Akiba, T., Endow, S.A. & Amos, L.A. Large conformational changes in a kinesin motor catalyzed by interaction with microtubules. Mol. Cell 23, 913–923 (2006).

    Article  CAS  Google Scholar 

  38. Hahlen, K. et al. Feedback of the kinesin-1 neck-linker position on the catalytic site. J. Biol. Chem. 281, 18868–18877 (2006).

    Article  CAS  Google Scholar 

  39. Case, R.B., Rice, S., Hart, C.L., Ly, B. & Vale, R.D. Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr. Biol. 10, 157–160 (2000).

    Article  CAS  Google Scholar 

  40. Hwang, W., Lang, M.J. & Karplus, M. Force generation in kinesin hinges on cover-neck bundle formation. Structure 16, 62–71 (2008).

    Article  CAS  Google Scholar 

  41. Mazumdar, M. & Cross, R.A. Engineering a lever into the kinesin neck. J. Biol. Chem. 273, 29352–29359 (1998).

    Article  CAS  Google Scholar 

  42. Kull, F.J. & Endow, S.A. Kinesin: switch I & II and the motor mechanism. J. Cell Sci. 115, 15–23 (2002).

    CAS  PubMed  Google Scholar 

  43. Hancock, W.O. & Howard, J. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc. Natl. Acad. Sci. USA 96, 13147–13152 (1999).

    Article  CAS  Google Scholar 

  44. Crevel, I.M. et al. What kinesin does at roadblocks: the coordination mechanism for molecular walking. EMBO J. 23, 23–32 (2004).

    Article  CAS  Google Scholar 

  45. Schief, W.R., Clark, R.H., Crevenna, A.H. & Howard, J. Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism. Proc. Natl. Acad. Sci. USA 101, 1183–1188 (2004).

    Article  CAS  Google Scholar 

  46. Alonso, M.C. et al. An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science 316, 120–123 (2007).

    Article  CAS  Google Scholar 

  47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  48. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  49. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999).

    Article  CAS  Google Scholar 

  50. Patton, C., Thompson, S. & Epel, D. Some precautions in using chelators to buffer metals in biological solutions. Cell Calcium 35, 427–431 (2004).

    Article  CAS  Google Scholar 

  51. Ma, Y.Z. & Taylor, E.W. Mechanism of microtubule kinesin ATPase. Biochemistry 34, 13242–13251 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Fukuda, H. Sato and T. Akamatsu for assistance, and M. Kikkawa, H. Yajima, T. Ogawa, H. Ueno, H. Miki, E. Nitta and other colleagues for comments and technical assistance. This work was supported by a Center of Excellence Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan to N.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutaka Hirokawa.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2 (PDF 2600 kb)

Supplementary Video 1

This movie supplements Figure 3. Ribbon models of the crucial proteinous elements for ADP/ATP exchange are shown. ADP, the Mg2+-stabilizer and the latch are shown as stick models. The Mg2+-water cap is shown as a ball model. Keys: Mg, cyan; H2O, red; P-loop, blue; L7, purple; switch I, green; switch II, yellow. (MOV 166 kb)

Supplementary Video 2

This movie supplements Figure 5. The main chains of the neck-linker, β0, and L13 are shown as sphere models. The side chains of conserved residues Val6 (blue), Leu285 (yellow), Asn322 (orange), Ile354 (red) and Asn361 (red) are also shown as sphere models. Key: β0, cyan; α4, yellow; α5-L13, light-orange; α6, brown; neck-linker, pink. (MOV 528 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitta, R., Okada, Y. & Hirokawa, N. Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin. Nat Struct Mol Biol 15, 1067–1075 (2008). https://doi.org/10.1038/nsmb.1487

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb.1487

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing