Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses

Abstract

Influenza virus remains a serious health threat, owing to its ability to evade immune surveillance through rapid genetic drift and reassortment. Here we used a human non-immune antibody phage-display library and the H5 hemagglutinin ectodomain to select ten neutralizing antibodies (nAbs) that were effective against all group 1 influenza viruses tested, including H5N1 'bird flu' and the H1N1 'Spanish flu'. The crystal structure of one such nAb bound to H5 shows that it blocks infection by inserting its heavy chain into a conserved pocket in the stem region, thus preventing membrane fusion. Nine of the nAbs employ the germline gene VH1-69, and all seem to use the same neutralizing mechanism. Our data further suggest that this region is recalcitrant to neutralization escape and that nAb-based immunotherapy is a promising strategy for broad-spectrum protection against seasonal and pandemic influenza viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro binding and neutralization of anti-H5 antibodies.
Figure 2: Prophylactic and therapeutic efficacy of anti-H5 nAbs in mice.
Figure 3: Neutralization mechanism.
Figure 4: Structure of the H5–F10 complex.
Figure 5: Sequence conservation in hemagglutinin groups, clusters and subtypes at the F10 epitope.
Figure 6: Cross-subtype neutralization by nAbs.
Figure 7: Three-dimensional comparison of the F10 epitope in group 1 and group 2 hemagglutinins.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. WHO. Factsheet 211: influenza. World Health Organizationhttp://www.who.int/mediacentre/factsheets/2003/fs211/en/〉 (2003).

  2. Webster, R.G. 1918 Spanish influenza: the secrets remain elusive. Proc. Natl. Acad. Sci. USA 96, 1164–1166 (1999).

    Article  CAS  Google Scholar 

  3. de Wit, E. & Fouchier, R.A. Emerging influenza. J. Clin. Virol. 41, 1–6 (2008).

    Article  Google Scholar 

  4. WHO. Global influenza surveillance. World Health Organizationhttp://www.who.int/csr/disease/influenza/influenzanetwork/en/index.html〉 (2008).

  5. Carrat, F. & Flahault, A. Influenza vaccine: the challenge of antigenic drift. Vaccine 25, 6852–6862 (2007).

    Article  CAS  Google Scholar 

  6. Cinatl, J. Jr, Michaelis, M. & Doerr, H.W. The threat of avian influenza A (H5N1). Part IV: development of vaccines. Med. Microbiol. Immunol. 196, 213–225 (2007).

    Article  CAS  Google Scholar 

  7. Subbarao, K. & Luke, C. H5N1 viruses and vaccines. PLoS Pathog. 3, e40 (2007).

    Article  Google Scholar 

  8. Leroux-Roels, I. et al. Broad clade 2 cross-reactive immunity induced by an adjuvanted clade 1 rH5N1 pandemic influenza vaccine. PLoS ONE 3, e1665 (2008).

    Article  Google Scholar 

  9. Baras, B. et al. Cross-Protection against lethal H5N1 challenge in ferrets with an adjuvanted pandemic influenza vaccine. PLoS ONE 3, e1401 (2008).

    Article  Google Scholar 

  10. de Jong, M.D. et al. Oseltamivir resistance during treatment of influenza A (H5N1) infection. N. Engl. J. Med. 353, 2667–2672 (2005).

    Article  CAS  Google Scholar 

  11. WHO. Clinical management of human infection with avian influenza A (H5N1) virus. World Health Organizationhttp://www.who.int/csr/disease/avian_influenza/ guidelines/ClinicalManagement07.pdf〉 (2007).

  12. Wright, P., Neumann, G. & Kawaoka, Y. Orthomyxoviruses. in Fields Virology Vol. 2 (eds. Knipe, D., Howley, P., Griffin, D., Lamb, R. & Martin, M.) 1692–1740 (Lippincott Williams & Wilkins, Philadelphia, PA, 2006).

    Google Scholar 

  13. Fauci, A.S. Pandemic influenza threat and preparedness. Emerg. Infect. Dis. 12, 73–77 (2006).

    Article  Google Scholar 

  14. Marasco, W.A. & Sui, J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat. Biotechnol. 25, 1421–1434 (2007).

    Article  CAS  Google Scholar 

  15. WHO. Antigenic and genetic characteristics of H5N1 viruses and candidate H5N1 vaccine viruses developed for potential use as pre-pandemic vaccines. World Health Organizationhttp://www.who.int/csr/disease/avian_influenza/guidelines/ summaryH520070403.pdf〉 (2007).

  16. World Health Organization Global Influenza Program Surveillance Network. Evolution of H5N1 avian influenza viruses in Asia. Emerg. Infect. Dis. 11, 1515–1521 (2005).

  17. Stevens, J. et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404–410 (2006).

    Article  CAS  Google Scholar 

  18. Sui, J. et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. USA 101, 2536–2541 (2004).

    Article  CAS  Google Scholar 

  19. Skehel, J.J. & Wiley, D.C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).

    Article  CAS  Google Scholar 

  20. Kida, H., Yoden, S., Kuwabara, M. & Yanagawa, R. Interference with a conformational change in the haemagglutinin molecule of influenza virus by antibodies as a possible neutralization mechanism. Vaccine 3, 219–222 (1985).

    Article  CAS  Google Scholar 

  21. Ha, Y., Stevens, D.J., Skehel, J.J. & Wiley, D.C. H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. EMBO J. 21, 865–875 (2002).

    Article  CAS  Google Scholar 

  22. Chothia, C. et al. Structural repertoire of the human VH segments. J. Mol. Biol. 227, 799–817 (1992).

    Article  CAS  Google Scholar 

  23. Samanta, U., Pal, D. & Chakrabarti, P. Packing of aromatic rings against tryptophan residues in proteins. Acta Crystallogr. D Biol. Crystallogr. 55, 1421–1427 (1999).

    Article  CAS  Google Scholar 

  24. Weis, W.I., Brunger, A.T., Skehel, J.J. & Wiley, D.C. Refinement of the influenza virus hemagglutinin by simulated annealing. J. Mol. Biol. 212, 737–761 (1990).

    Article  CAS  Google Scholar 

  25. Pal, D. & Chakrabarti, P. Non-hydrogen bond interactions involving the methionine sulfur atom. J. Biomol. Struct. Dyn. 19, 115–128 (2001).

    Article  CAS  Google Scholar 

  26. Champ, P.C. & Camacho, C.J. FastContact: a free energy scoring tool for protein-protein complex structures. Nucleic Acids Res. 35, W556–W560 (2007).

    Article  Google Scholar 

  27. Stevens, J. et al. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303, 1866–1870 (2004).

    Article  CAS  Google Scholar 

  28. Daniels, R.S. et al. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40, 431–439 (1985).

    Article  CAS  Google Scholar 

  29. Thoennes, S. et al. Analysis of residues near the fusion peptide in the influenza hemagglutinin structure for roles in triggering membrane fusion. Virology 370, 403–414 (2008).

    Article  CAS  Google Scholar 

  30. Earp, L.J., Delos, S.E., Park, H.E. & White, J.M. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol. 285, 25–66 (2005).

    CAS  PubMed  Google Scholar 

  31. Barbey-Martin, C. et al. An antibody that prevents the hemagglutinin low pH fusogenic transition. Virology 294, 70–74 (2002).

    Article  CAS  Google Scholar 

  32. Russell, R.J. et al. H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology 325, 287–296 (2004).

    Article  CAS  Google Scholar 

  33. Fouchier, R.A. et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol. 79, 2814–2822 (2005).

    Article  CAS  Google Scholar 

  34. Gamblin, S.J. et al. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303, 1838–1842 (2004).

    Article  CAS  Google Scholar 

  35. Yamada, S. et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444, 378–382 (2006).

    Article  CAS  Google Scholar 

  36. Ha, Y., Stevens, D.J., Skehel, J.J. & Wiley, D.C. X-ray structure of the hemagglutinin of a potential H3 avian progenitor of the 1968 Hong Kong pandemic influenza virus. Virology 309, 209–218 (2003).

    Article  CAS  Google Scholar 

  37. Chen, J., Skehel, J.J. & Wiley, D.C. N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA2 subunit to form an N cap that terminates the triple-stranded coiled coil. Proc. Natl. Acad. Sci. USA 96, 8967–8972 (1999).

    Article  CAS  Google Scholar 

  38. Sui, J. et al. Broadening of neutralization activity to directly block a dominant antibody-driven SARS-coronavirus evolution pathway. PLoS Pathog. 4, e1000197 (2008).

    Article  Google Scholar 

  39. Okuno, Y., Isegawa, Y., Sasao, F. & Ueda, S. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 67, 2552–2558 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Smirnov, Y.A. et al. An epitope shared by the hemagglutinins of H1, H2, H5, and H6 subtypes of influenza A virus. Acta Virol. 43, 237–244 (1999).

    CAS  PubMed  Google Scholar 

  41. Smirnov, Y.A., Lipatov, A.S., Gitelman, A.K., Claas, E.C. & Osterhaus, A.D. Prevention and treatment of bronchopneumonia in mice caused by mouse-adapted variant of avian H5N2 influenza A virus using monoclonal antibody against conserved epitope in the HA stem region. Arch. Virol. 145, 1733–1741 (2000).

    Article  CAS  Google Scholar 

  42. Lim, A.P. et al. Neutralizing human monoclonal antibody against H5N1 influenza HA selected from a Fab-phage display library. Virol. J. 5, 130 (2008).

    Article  Google Scholar 

  43. Huang, C.C. et al. Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc. Natl. Acad. Sci. USA 101, 2706–2711 (2004).

    Article  CAS  Google Scholar 

  44. Luftig, M.A. et al. Structural basis for HIV-1 neutralization by a gp41 fusion intermediate-directed antibody. Nat. Struct. Mol. Biol. 13, 740–747 (2006).

    Article  CAS  Google Scholar 

  45. Chan, C.H., Hadlock, K.G., Foung, S.K. & Levy, S. V H 1–69 gene is preferentially used by hepatitis C virus-associated B cell lymphomas and by normal B cells responding to the E2 viral antigen. Blood 97, 1023–1026 (2001).

    Article  CAS  Google Scholar 

  46. Lee, J.E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177–182 (2008).

    Article  CAS  Google Scholar 

  47. Kashyap, A.K. et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl. Acad. Sci. USA 105, 5986–5991 (2008).

    Article  CAS  Google Scholar 

  48. Scherer, E.M., Zwick, M.B., Teyton, L. & Burton, D.R. Difficulties in eliciting broadly neutralizing anti-HIV antibodies are not explained by cardiolipin autoreactivity. AIDS 21, 2131–2139 (2007).

    Article  CAS  Google Scholar 

  49. Selvarajah, S. et al. Focused dampening of antibody response to the immunodominant variable loops by engineered soluble gp140. AIDS Res. Hum. Retroviruses 24, 301–314 (2008).

    Article  CAS  Google Scholar 

  50. Scheerlinck, J.P. et al. Redistribution of a murine humoral immune response following removal of an immunodominant B cell epitope from a recombinant fusion protein. Mol. Immunol. 30, 733–739 (1993).

    Article  CAS  Google Scholar 

  51. Throsby, M. et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE 3, e3942 (2008).

    Article  Google Scholar 

  52. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  53. Otwinowski, Z.O. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  54. Hwang, W.C. et al. Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. J. Biol. Chem. 281, 34610–34616 (2006).

    Article  CAS  Google Scholar 

  55. Rodriguez, R., Chinea, G., Lopez, N., Pons, T. & Vriend, G. Homology modeling, model and software evaluation: three related resources. Bioinformatics 14, 523–528 (1998).

    Article  CAS  Google Scholar 

  56. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  58. McRee, D.E. A visual protein crystallographic software system for X11/Xview. J. Mol. Graph. 10, 44–46 (1992).

    Article  Google Scholar 

  59. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  60. Rowe, T. et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J. Clin. Microbiol. 37, 937–943 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bullough, P.A., Hughson, F.M., Skehel, J.J. & Wiley, D.C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Appleton (Cornell University) for the gift of mouse mAbs against H5N1, 17A2.1.2 and 22F; A. Klimov (CDC) and A. Balish (CDC) for providing ferret antiserum and virus sequences; R. Webster (St. Jude Children's Research Hospital) for H11N9, H13N6 and H16N3; L. Quynh Mai (National Institute of Hygiene and Epidemiology, Vietnam Ministry of Health) for H5N1; W. Lim (Hong Kong Department of Health) for H5N1 and H9N2, as well as E. Sedyaningsih, T. Soendoro (National Institute of Health Research and Development, Indonesian Ministry of Health) for H5N1 specimens; P. Palese (Mount Sinai School of Medicine) for pCAGGS-H1(SC) plasmid encoding the full-length hemagglutinin protein of H1-SC1918; M. Farzan (New England Primate Research Center, Harvard Medical School) for pCAGGS-H1 (PR) plasmid encoding the hemagglutinin protein of H1-PR34 and X. Yang (Beth Israel Deaconess Medical Center, Harvard Medical School) for pCAGGS-H7 (FPV) encoding H7-FP34 hemagglutinin; and R. Fuller (University of Michigan) for furin cDNA. We thank W. Yuan and W. Li for helpful discussions and Y. Lin for assistance in crystallization and critical discussion. We thank the US National Institutes of Health (NIH) and the Department of Energy (DOE) for access to the Stanford Synchrotron Radiation Facility and the facility staff for assistance in X-ray data collection. Molecular graphics images were produced using the UCSF Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41 RR-01081). This work was supported by NIH (U01-AI074518-01) to W.A.M. and in part by NIH (P01-AI055789) to R.C.L.

Author information

Authors and Affiliations

Authors

Contributions

In the DFCI team, J.S. and A.M. constructed H5-TH04 hemagglutinin; J.S. and D.A. performed phage-display antibody library selections and screening for antibodies by ELISA, FACS and pseudovirus-neutralization assays; J.S., M.A. and T.H. carried out epitope mapping using mutagenesis and FACS analysis; J.S., D.A. and M.A. purified antibodies; J.S. and A.Y. analyzed kinetics of antibody binding with hemagglutinin protein; J.S. performed hemagglutinin subtype cross-binding and neutralization assays, pseudovirus binding and fusion inhibition assay; J.S. and W.A.M. designed the study, analyzed data and wrote the sections about these studies. In the BIMR team, R.C.L. supervised all of the work; G.W. and G.C. cloned and expressed recombinant H5 for antibody panning and crystallization. W.C.H. expressed F10 scFv and crystallized the F10–HA0 complex; W.C.H., E.S. and B.S. collected diffraction data and solved and refined the structure; L.A.B. supervised cloning and expression; W.C.H., L.A.B. and R.C.L. wrote sections about these studies. In the CDC team, S.P., L.C., H.W., N.J.C. and R.O.D. designed the study and performed animal studies as well as virology studies with wild-type viruses; R.O.D wrote sections of these studies; J.S., R.O.D., R.C.L. and W.A.M. finalized the paper. All authors commented on the manuscript.

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention or the Agency for Toxic Substances and Disease Registry.

Corresponding authors

Correspondence to Jianhua Sui, Ruben O Donis, Robert C Liddington or Wayne A Marasco.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–3, Supplementary Notes 1–6 and Supplementary Methods (PDF 847 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sui, J., Hwang, W., Perez, S. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 16, 265–273 (2009). https://doi.org/10.1038/nsmb.1566

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb.1566

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing