Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution structure of the rotor ring of a proton-dependent ATP synthase

Abstract

The crystal structure of the c-ring from the proton-coupled F1Fo ATP synthase from Spirulina platensis is shown at 2.1-Å resolution. The ring includes 15 membrane-embedded c subunits forming an hourglass-shaped assembly. The structure demonstrates that proton translocation across the membrane entails protonation of a conserved glutamate located near the membrane center in the c subunit outer helix. The proton is locked in this site by a precise hydrogen bond network reminiscent of that in Na+-dependent ATP synthases. However, the structure suggests that the different coordination chemistry of the bound proton and the smaller curvature of the outer helix drastically enhance the selectivity of the H+ site against other cations, including H3O+. We propose a model for proton translocation whereby the c subunits remain in this proton-locked state when facing the membrane lipid. Proton exchange would occur in a more hydrophilic and electrostatically distinct environment upon contact with the a subunit interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the c15 ring of the S. platensis ATP synthase.
Figure 2: Proton-binding site.
Figure 3: Structure comparison of the c-rings from S. platensis and I. tartaricus.
Figure 4: Amino acid alignment of c subunits from S. platensis, spinach (Sp.) chloroplast, I. tartaricus and E. coli, and from the K-subunit from E. hirae.
Figure 5: Proposed mechanism of coupled rotation and ion translocation in the proton-dependent F-ATP synthase of S. platensis.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Boyer, P.D. The binding change mechanism for ATP synthase—some probabilities and possibilities. Biochim. Biophys. Acta 1140, 215–250 (1993).

    Article  CAS  Google Scholar 

  2. Abrahams, J.P., Leslie, A.G.W., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  3. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  4. Junge, W., Sielaff, H. & Engelbrecht, S. Torque generation and elastic power transmission in the rotary FoF1-ATPase. Nature 459, 364–370 (2009).

    Article  CAS  Google Scholar 

  5. Stock, D., Leslie, A.G.W. & Walker, J.E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999).

    Article  CAS  Google Scholar 

  6. Pogoryelov, D. et al. The c15 ring of the Spirulina platensis F-ATP synthase: F1/Fo symmetry mismatch is not obligatory. EMBO Rep. 6, 1040–1044 (2005).

    Article  CAS  Google Scholar 

  7. Meier, T., Polzer, P., Diederichs, K., Welte, W. & Dimroth, P. Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Science 308, 659–662 (2005).

    CAS  PubMed  Google Scholar 

  8. Meier, T. et al. Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases. J. Mol. Biol. 391, 498–507 (2009).

    Article  CAS  Google Scholar 

  9. Lightowlers, R.N., Howitt, S.M., Hatch, L., Gibson, F. & Cox, G.B. The proton pore in the Escherichia coli FoF1-ATPase: a requirement for arginine at position 210 of the a-subunit. Biochim. Biophys. Acta 894, 399–406 (1987).

    Article  CAS  Google Scholar 

  10. Cain, B.D. & Simoni, R.D. Proton translocation by the F1FoATPase of Escherichia coli. Mutagenic analysis of the a subunit. J. Biol. Chem. 264, 3292–3300 (1989).

    CAS  PubMed  Google Scholar 

  11. Eya, S., Maeda, M. & Futai, M. Role of the carboxyl terminal region of H+-ATPase (FoF1) a subunit from Escherichia coli. Arch. Biochem. Biophys. 284, 71–77 (1991).

    Article  CAS  Google Scholar 

  12. Ferguson, S.A., Keis, S. & Cook, G.M. Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J. Bacteriol. 188, 5045–5054 (2006).

    Article  CAS  Google Scholar 

  13. Laubinger, W. & Dimroth, P. Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1Fo type. Eur. J. Biochem. 168, 475–480 (1987).

    Article  CAS  Google Scholar 

  14. Neumann, S., Matthey, U., Kaim, G. & Dimroth, P. Purification and properties of the F1Fo ATPase of Ilyobacter tartaricus, a sodium ion pump. J. Bacteriol. 180, 3312–3316 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Reidlinger, J. & Müller, V. Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1Fo-type enzyme. Eur. J. Biochem. 223, 275–283 (1994).

    Article  CAS  Google Scholar 

  16. Vollmar, M., Schlieper, D., Winn, M., Büchner, C. & Groth, G. Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J. Biol. Chem. 284, 18228–18235 (2009).

    Article  CAS  Google Scholar 

  17. Girvin, M.E., Rastogi, V.K., Abildgaard, F., Markley, J.L. & Fillingame, R.H. Solution structure of the transmembrane H+-transporting subunit c of the F1Fo ATP synthase. Biochemistry 37, 8817–8824 (1998).

    Article  CAS  Google Scholar 

  18. Bakels, R.H., van Walraven, H.S., Krab, K., Scholts, M.J. & Kraayenhof, R. On the activation mechanism of the H+-ATP synthase and unusual thermodynamic properties in the alkalophilic cyanobacterium Spirulina platensis. Eur. J. Biochem. 213, 957–964 (1993).

    Article  CAS  Google Scholar 

  19. Varco-Merth, B., Fromme, R., Wang, M. & Fromme, P. Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments. Biochim. Biophys. Acta 1777, 605–612 (2008).

    Article  CAS  Google Scholar 

  20. Pogoryelov, D. et al. Probing the rotor subunit interface of the ATP synthase from Ilyobacter tartaricus. FEBS J. 275, 4850–4862 (2008).

    Article  CAS  Google Scholar 

  21. Gibbons, C., Montgomery, M.G., Leslie, A.G. & Walker, J.E. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nat. Struct. Biol. 7, 1055–1061 (2000).

    Article  CAS  Google Scholar 

  22. Rodgers, A.J. & Wilce, M.C. Structure of the γ-ε complex of ATP synthase. Nat. Struct. Biol. 7, 1051–1054 (2000).

    Article  CAS  Google Scholar 

  23. Guskov, A. et al. Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 16, 334–342 (2009).

    Article  CAS  Google Scholar 

  24. Vonck, J. et al. Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase. J. Mol. Biol. 321, 307–316 (2002).

    Article  CAS  Google Scholar 

  25. Meier, T., Matthey, U., Henzen, F., Dimroth, P. & Müller, D.J. The central plug in the reconstituted undecameric c cylinder of a bacterial ATP synthase consists of phospholipids. FEBS Lett. 505, 353–356 (2001).

    Article  CAS  Google Scholar 

  26. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A.G. & Walker, J.E. Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308, 654–659 (2005).

    Article  CAS  Google Scholar 

  27. Meier, T. et al. Evidence for structural integrity in the undecameric c-rings isolated from sodium ATP synthases. J. Mol. Biol. 325, 389–397 (2003).

    Article  CAS  Google Scholar 

  28. Boyer, P.D. Bioenergetic coupling to protonmotive force: should we be considering hydronium ion coordination and not group protonation? Trends Biochem. Sci. 13, 5–7 (1988).

    Article  CAS  Google Scholar 

  29. von Ballmoos, C. & Dimroth, P. Two distinct proton binding sites in the ATP synthase family. Biochemistry 46, 11800–11809 (2007).

    Article  CAS  Google Scholar 

  30. Chen, M.F., Wang, J.D. & Su, T.M. Concentration gradient effects of sodium and lithium ions and deuterium isotope effects on the activities of H+-ATP synthase from chloroplasts. Biophys. J. 96, 2479–2489 (2009).

    Article  CAS  Google Scholar 

  31. Kaim, G., Wehrle, F., Gerike, U. & Dimroth, P. Molecular basis for the coupling ion selectivity of F1Fo ATP synthases: probing the liganding groups for Na+ and Li+ in the c subunit of the ATP synthase from Propionigenium modestum. Biochemistry 36, 9185–9194 (1997).

    Article  CAS  Google Scholar 

  32. von Ballmoos, C. Alternative proton binding mode in ATP synthases. J. Bioenerg. Biomembr. 39, 441–445 (2007).

    Article  CAS  Google Scholar 

  33. Murata, T. et al. Crystal structure of rotor ring with DCCD of the V- ATPase from Enterococcus hirae. doi:10.2210/pdb2db4/pdb (5 December 2006).

  34. Pogoryelov, D. et al. Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J. Bioenerg. Biomembr. 35, 427–437 (2003).

    Article  CAS  Google Scholar 

  35. Valiyaveetil, F.I. & Fillingame, R.H. On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli FoF1-ATP synthase. J. Biol. Chem. 272, 32635–32641 (1997).

    Article  CAS  Google Scholar 

  36. Wehrle, F., Kaim, G. & Dimroth, P. Molecular mechanism of the ATP synthase's Fo motor probed by mutational analyses of subunit a. J. Mol. Biol. 322, 369–381 (2002).

    Article  CAS  Google Scholar 

  37. Steed, P.R. & Fillingame, R.H. Subunit a facilitates aqueous access to a membrane-embedded region of subunit c in Escherichia coli F1Fo ATP synthase. J. Biol. Chem. 283, 12365–12372 (2008).

    Article  CAS  Google Scholar 

  38. Feniouk, B.A. et al. The of ATP synthase: ohmic conductance (10 fS), and absence of voltage gating. Biophys. J. 86, 4094–4109 (2004).

    Article  CAS  Google Scholar 

  39. Moore, K.J. & Fillingame, R.H. Structural interactions between transmembrane helices 4 and 5 of subunit a and the subunit c ring of Escherichia coli ATP synthase. J. Biol. Chem. 283, 31726–31735 (2008).

    Article  CAS  Google Scholar 

  40. Steed, P.R. & Fillingame, R.H. Aqueous accessibility to the transmembrane regions of subunit c of the Escherichia coli F1Fo ATP synthase. J. Biol. Chem. 284, 23243–23250 (2009).

    Article  CAS  Google Scholar 

  41. von Ballmoos, C. et al. Membrane topography of the coupling ion binding site in Na+-translocating F1Fo ATP synthase. J. Biol. Chem. 277, 3504–3510 (2002).

    Article  CAS  Google Scholar 

  42. Fillingame, R.H., Angevine, C.M. & Dmitriev, O.Y. Mechanics of coupling proton movements to c-ring rotation in ATP synthase. FEBS Lett. 555, 29–34 (2003).

    Article  CAS  Google Scholar 

  43. Greie, J.C., Heitkamp, T. & Altendorf, K. The transmembrane domain of subunit b of the Escherichia coli F1Fo ATP synthase is sufficient for H+-translocating activity together with subunits a and c. Eur. J. Biochem. 271, 3036–3042 (2004).

    Article  CAS  Google Scholar 

  44. Diederichs, K. & Karplus, P.A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 4, 269–275 (1997).

    Article  CAS  Google Scholar 

  45. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  46. McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 63, 32–41 (2007).

    Article  CAS  Google Scholar 

  47. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004).

    Article  CAS  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  49. Zwart, P.H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Kühlbrandt for support and for critically reading the manuscript and K. Diederichs and A. Terwisscha van Scheltinga for useful discussions and help. The staff of the Swiss Light Source (SLS, PXII) and the European Synchrotron Radiation Facility (ESRF) are acknowledged for their support. We also thank A. Royant (L'Institut de Biologie Structurale (ISB), Grenoble) for help with single-crystal spectroscopy and J. Langer for help with the ESI-MS measurements. This work was supported in parts by the Cluster of Excellence “Macromolecular Complexes” at the Goethe University, Frankfurt (Deutsche Forschungsgemeinschaft (DFG) Project EXC 115) and DFG Collaborative Research Center 807.

Author information

Authors and Affiliations

Authors

Contributions

D.P. performed the experiments; D.P. and Ö.Y. analyzed the crystallographic data; T.M. and D.P. designed and T.M. directed the research project; D.P., Ö.Y., J.-D.F.G. and T.M. analyzed and interpreted the structure, developed the conceptual model and wrote the paper.

Corresponding author

Correspondence to Thomas Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogoryelov, D., Yildiz, Ö., Faraldo-Gómez, J. et al. High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16, 1068–1073 (2009). https://doi.org/10.1038/nsmb.1678

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb.1678

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing