Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Replication stress checkpoint signaling controls tRNA gene transcription

Abstract

In budding yeast, the transcriptional machinery at tRNA genes naturally interferes with replication in a way that can promote chromosome breakage. Here we show that a signaling module composed of core components of the replication stress checkpoint pathway represses this fork-pausing machinery in normally cycling and genotoxin-treated cells. Specifically, the sensor kinase Mec1, the signaling adaptor Mrc1 and the transducer kinase Rad53 relay signals that globally repress tRNA gene transcription during unchallenged proliferation and under conditions of replication stress. Repressive signaling in genotoxin-treated cells requires Rad53-dependent activation of a conserved repressor of tRNA gene transcription, Maf1. Cells lacking Maf1 are sensitive to replication stress under conditions of elevated tRNA gene transcription. We propose that checkpoint control of the fork-pausing activity of tRNA genes complements the repertoire of replisome-targeted mechanisms by which checkpoint proteins promote faithful DNA replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Control of tRNA gene transcription by Mec1 and Mrc1 during unchallenged proliferation.
Figure 2: Control of tRNA gene transcription by transducer kinase Rad53 during unchallenged proliferation.
Figure 3: Repression of tRNA gene transcription under conditions of replication stress.
Figure 4: Maf1-dependent repression of tRNA gene transcription under conditions of replication stress.

Similar content being viewed by others

References

  1. Geiduschek, E.P. & Kassavetis, G.A. The RNA polymerase III transcription apparatus. J. Mol. Biol. 310, 1–26 (2001).

    Article  CAS  Google Scholar 

  2. Deshpande, A.M. & Newlon, C.S. DNA replication fork pause sites dependent on transcription. Science 272, 1030–1033 (1996).

    Article  CAS  Google Scholar 

  3. Ivessa, A.S. et al. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell 12, 1525–1536 (2003).

    Article  CAS  Google Scholar 

  4. Azvolinsky, A., Giresi, P.G., Lieb, J.D. & Zakian, V.A. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34, 722–734 (2009).

    Article  CAS  Google Scholar 

  5. Szyjka, S.J., Viggiani, C.J. & Aparicio, O.M. Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol. Cell 19, 691–697 (2005).

    Article  CAS  Google Scholar 

  6. Szilard, R.K. et al. Systematic identification of fragile sites via genome-wide location analysis of γ-H2AX. Nat. Struct. Mol. Biol. 17, 299–305 (2010).

    Article  CAS  Google Scholar 

  7. Mohanty, B.K., Bairwa, N.K. & Bastia, D. The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 103, 897–902 (2006).

    Article  CAS  Google Scholar 

  8. Hodgson, B., Calzada, A. & Labib, K. Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase. Mol. Biol. Cell 18, 3894–3902 (2007).

    Article  CAS  Google Scholar 

  9. Sekedat, M.D. et al. GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Mol. Syst. Biol. 6, 353 (2010).

    Article  Google Scholar 

  10. Lambert, S. & Carr, A.M. Checkpoint responses to replication fork barriers. Biochimie 87, 591–602 (2005).

    Article  CAS  Google Scholar 

  11. Lambert, S., Froget, B. & Carr, A.M. Arrested replication fork processing: interplay between checkpoints and recombination. DNA Repair (Amst.) 6, 1042–1061 (2007).

    Article  CAS  Google Scholar 

  12. Rothstein, R., Michel, B. & Gangloff, S. Replication fork pausing and recombination or “gimme a break”. Genes Dev. 14, 1–10 (2000).

    CAS  PubMed  Google Scholar 

  13. Admire, A. et al. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev. 20, 159–173 (2006).

    Article  CAS  Google Scholar 

  14. Boule, J.B. & Zakian, V.A. Roles of Pif1-like helicases in the maintenance of genomic stability. Nucleic Acids Res. 34, 4147–4153 (2006).

    Article  CAS  Google Scholar 

  15. Azvolinsky, A., Dunaway, S., Torres, J.Z., Bessler, J.B. & Zakian, V.A. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev. 20, 3104–3116 (2006).

    Article  CAS  Google Scholar 

  16. de la Loza, M.C., Wellinger, R.E. & Aguilera, A. Stimulation of direct-repeat recombination by RNA polymerase III transcription. DNA Repair (Amst.) 8, 620–626 (2009).

    Article  Google Scholar 

  17. Willis, I.M., Desai, N. & Upadhya, R. Signaling repression of transcription by RNA polymerase III in yeast. Prog. Nucleic Acid Res. Mol. Biol. 77, 323–353 (2004).

    Article  CAS  Google Scholar 

  18. Ghavidel, A. & Schultz, M.C. TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell 106, 575–584 (2001).

    Article  CAS  Google Scholar 

  19. Wyatt, M.D. & Pittman, D.L. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chem. Res. Toxicol. 19, 1580–1594 (2006).

    Article  CAS  Google Scholar 

  20. Callegari, A.J. & Kelly, T.J. Shedding light on the DNA damage checkpoint. Cell Cycle 6, 660–666 (2007).

    Article  CAS  Google Scholar 

  21. Harrison, J.C. & Haber, J.E. Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet. 40, 209–235 (2006).

    Article  CAS  Google Scholar 

  22. Alcasabas, A.A. et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat. Cell Biol. 3, 958–965 (2001).

    Article  CAS  Google Scholar 

  23. Roberts, D.N., Wilson, B., Huff, J.T., Stewart, A.J. & Cairns, B.R. Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression. Mol. Cell 22, 633–644 (2006).

    Article  CAS  Google Scholar 

  24. Oficjalska-Pham, D. et al. General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol. Cell 22, 623–632 (2006).

    Article  CAS  Google Scholar 

  25. Sanchez, Y. et al. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271, 357–360 (1996).

    Article  CAS  Google Scholar 

  26. Osborn, A.J. & Elledge, S.J. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev. 17, 1755–1767 (2003).

    Article  CAS  Google Scholar 

  27. Katou, Y. et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424, 1078–1083 (2003).

    Article  CAS  Google Scholar 

  28. Kats, E.S., Albuquerque, C.P., Zhou, H. & Kolodner, R.D. Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants. Proc. Natl. Acad. Sci. USA 103, 3710–3715 (2006).

    Article  CAS  Google Scholar 

  29. Gasch, A.P. et al. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol. Biol. Cell 12, 2987–3003 (2001).

    Article  CAS  Google Scholar 

  30. Tercero, J.A., Longhese, M.P. & Diffley, J.F. A central role for DNA replication forks in checkpoint activation and response. Mol. Cell 11, 1323–1336 (2003).

    Article  CAS  Google Scholar 

  31. Nieduszynski, C.A., Hiraga, S., Ak, P., Benham, C.J. & Donaldson, A.D. OriDB: a DNA replication origin database. Nucleic Acids Res. 35, D40–D46 (2007).

    Article  CAS  Google Scholar 

  32. Hartman, J.L. t. Buffering of deoxyribonucleotide pool homeostasis by threonine metabolism. Proc. Natl. Acad. Sci. USA 104, 11700–11705 (2007).

    Article  CAS  Google Scholar 

  33. Shimada, K. et al. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr. Biol. 18, 566–575 (2008).

    Article  CAS  Google Scholar 

  34. Morrison, A.J. et al. Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses. Cell 130, 499–511 (2007).

    Article  CAS  Google Scholar 

  35. Ciesla, M. et al. Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription. Mol. Cell. Biol. 27, 7693–7702 (2007).

    Article  CAS  Google Scholar 

  36. Parsons, A.B. et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126, 611–625 (2006).

    Article  CAS  Google Scholar 

  37. Cabart, P., Lee, J. & Willis, I.M. Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro. J. Biol. Chem. 283, 36108–36117 (2008).

    Article  CAS  Google Scholar 

  38. Thompson, M., Haeusler, R.A., Good, P.D. & Engelke, D.R. Nucleolar clustering of dispersed tRNA genes. Science 302, 1399–1401 (2003).

    Article  CAS  Google Scholar 

  39. O'Neill, B.M. et al. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage. Proc. Natl. Acad. Sci. USA 104, 9290–9295 (2007).

    Article  CAS  Google Scholar 

  40. Krogan, N.J. et al. High-definition macromolecular composition of yeast RNA-processing complexes. Mol. Cell 13, 225–239 (2004).

    Article  CAS  Google Scholar 

  41. Huang, Y. & Maraia, R.J. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res. 29, 2675–2690 (2001).

    Article  CAS  Google Scholar 

  42. Pluta, K. et al. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 5031–5040 (2001).

    Article  CAS  Google Scholar 

  43. White, R.J. RNA polymerases I and III, growth control and cancer. Nat. Rev. Mol. Cell Biol. 6, 69–78 (2005).

    Article  CAS  Google Scholar 

  44. Demidova, A.R., Aau, M.Y., Zhuang, L. & Yu, Q. Dual regulation of Cdc25A by Chk1 and p53–ATF3 in DNA replication checkpoint control. J. Biol. Chem. 284, 4132–4139 (2009).

    Article  CAS  Google Scholar 

  45. Crighton, D. et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 22, 2810–2820 (2003).

    Article  CAS  Google Scholar 

  46. Marshall, L., Kenneth, N.S. & White, R.J. Elevated tRNA(iMet) synthesis can drive cell proliferation and oncogenic transformation. Cell 133, 78–89 (2008).

    Article  CAS  Google Scholar 

  47. Negrini, S., Gorgoulis, V.G. & Halazonetis, T.D. Genomic instability–an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228 (2010).

    Article  CAS  Google Scholar 

  48. Aparicio, O., Geisberg, J.V. & Struhl, K. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr. Protoc. Cell Biol. Chapter 17, Unit 17 7 (2004).

Download references

Acknowledgements

We are grateful to Y. Sanchez, D. Stern and I. Willis for genetic reagents. K. Robinson, D. Stuart, M. Weinfeld, M. Grenon, N. Lowndes, I. Willis, R. Moir, O. Lefebvre and L. Minard are thanked for technical advice and M. MacDonald for technical assistance. R. Wellinger, T. Weinert, P. Pasero and J. Cobb are acknowledged for helpful discussions. This work was supported by grants to M.C.S. from the National Cancer Institute of Canada (supported by the Canadian Cancer Society), the Canadian Institutes for Health Research, the Cancer Research Society and the Alberta Heritage Foundation for Medical Research (AHFMR). V.C.N. was supported by studentships from the AHFMR and the National Science and Engineering Research Council of Canada. H.E.M. was supported by a summer studentship from the AHFMR.

Author information

Authors and Affiliations

Authors

Contributions

V.C.N. generated about half of the yeast strains and performed most of the in vivo transcription experiments as well as the assays of Maf1 phosphorylation; B.W.C. generated about half the yeast strains, performed the ChIP experiments and in vivo MAF1 epistasis transcription experiments and developed the maf1Δ HU sensitivity assay; S.L.K.-C. discovered HU repression by Maf1; D.J.H. and H.E.M. provided technical assistance to V.C.N. and B.W.C.; M.C.S. conceived the project, performed the in vitro transcription experiments and wrote the manuscript.

Corresponding author

Correspondence to Michael C Schultz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1 and 2, Supplementary Results and Supplementary Methods (PDF 962 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, V., Clelland, B., Hockman, D. et al. Replication stress checkpoint signaling controls tRNA gene transcription. Nat Struct Mol Biol 17, 976–981 (2010). https://doi.org/10.1038/nsmb.1857

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb.1857

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing