Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo

Abstract

The glmS riboswitch belongs to the family of regulatory RNAs that provide feedback regulation of metabolic genes. It is also a ribozyme that self-cleaves upon binding glucosamine-6-phosphate, the product of the enzyme encoded by glmS. The ligand concentration dependence of intracellular self-cleavage kinetics was measured for the first time in a yeast model system and unexpectedly revealed that this riboswitch is subject to inhibition as well as activation by hexose metabolites. Reporter gene experiments in Bacillus subtilis confirmed that this riboswitch integrates positive and negative chemical signals in its natural biological context. Contrary to the conventional view that a riboswitch responds to just a single cognate metabolite, our new model proposes that a single riboswitch integrates information from an array of chemical signals to modulate gene expression based on the overall metabolic state of the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: System for measuring intracellular glmS riboswitch cleavage kinetics.
Figure 2: GlcN dependence of glmS riboswitch cleavage in yeast.
Figure 3: Chimeric mRNA cleavage and decay kinetics after transcription inhibition in different carbon sources.
Figure 4: Hexoses inhibit riboswitch cleavage in vitro and in Bacillus subtilis.
Figure 5: Model for riboswitch regulation of GlmS gene expression.

Similar content being viewed by others

References

  1. Montange, R.K. & Batey, R.T. Riboswitches: emerging themes in RNA structure and function. Annu. Rev. Biophys. 37, 117–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Henkin, T.M. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev. 22, 3383–3390 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roth, A. & Breaker, R.R. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78, 305–334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dambach, M.D. & Winkler, W.C. Expanding roles for metabolite-sensing regulatory RNAs. Curr. Opin. Microbiol. 12, 161–169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A. & Breaker, R.R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Collins, J.A., Irnov, I., Baker, S. & Winkler, W.C. Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev. 21, 3356–3368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCarthy, T.J. et al. Ligand requirements for glmS ribozyme self-cleavage. Chem. Biol. 12, 1221–1226 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Donahue, C.P. & Fedor, M.J. Kinetics of hairpin ribozyme cleavage in yeast. RNA 3, 961–973 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Watson, P.Y. & Fedor, M.J. Determination of intracellular RNA folding rates using self-cleaving RNAs. Methods. Enzymol. 468, 259–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Klein, D.J., Been, M.D. & Ferré-D′Amaré, A.R. Essential role of an active-site guanine in glmS ribozyme catalysis. J. Am. Chem. Soc. 129, 14858–14859 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Cochrane, J.C., Lipchock, S.V., Smith, K.D. & Strobel, S.A. Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme. Biochemistry 48, 3239–3246 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Klein, D.J., Wilkinson, S.R., Been, M.D. & Ferré-D′Amaré, A.R. Requirement of helix P2.2 and nucleotide G1 for positioning the cleavage site and cofactor of the glmS ribozyme. J. Mol. Biol. 373, 178–189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burger, M. & Hejmová, L. Uptake of metabolizable sugars by Saccharomyces cerevisiae. Folia Microbiol. 6, 80–85 (1961).

    Article  CAS  Google Scholar 

  14. Klein, D.J. & Ferré-D'Amaré, A.R. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313, 1752–1756 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Cochrane, J.C., Lipchock, S.V. & Strobel, S.A. Structural investigation of the glmS ribozyme bound to its catalytic cofactor. Chem. Biol. 14, 97–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Rizzi, M. et al. In vivo investigations of glucose transport in Saccharomyces cerevisiae. Biotechnol. Bioeng. 49, 316–327 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Sellick, C.A., Campbell, R.N. & Reece, R.J. Galactose metabolism in yeast—Structure and regulation of the Leloir pathway enzymes and the genes encoding them. Int. Rev. Cell Mol. Biol. 269, 111–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Nevoigt, E. & Stahl, U. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 21, 231–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Albe, K.R., Butler, M.H. & Wright, B.E. Cellular concentrations of enzymes and their substrates. J. Theor. Biol. 143, 163–195 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Freese, E.B., Cole, R.M., Klofat, W. & Freese, E. Growth, sporulation, and enzyme defects of glucosamine mutants of Bacillus subtilis. J. Bacteriol. 101, 1046–1062 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bates, C.J. & Pasternak, C.A. Further studies on the regulation of amino sugar metabolism in Bacillus subtilis. Biochem. J. 96, 147–154 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blencke, H.M. et al. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Eng. 5, 133–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Sudarsan, N. et al. Tandem riboswitch architectures exhibit complex gene control functions. Science 314, 300–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Montange, R.K. et al. Discrimination between closely related cellular metabolites by the SAM-I riboswitch. J. Mol. Biol. 396, 761–772 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Montange, R.K. & Batey, R.T. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Tomsic, J., McDaniel, B.A., Grundy, F.J. & Henkin, T.M. Natural variability in S-adenosylmethionine (SAM)-dependent riboswitches: S-box elements in Bacillus subtilis exhibit differential sensitivity to SAM In vivo and in vitro. J. Bacteriol. 190, 823–833 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Wilkinson, S.R. & Been, M.D. A pseudoknot in the 3′ non-core region of the glmS ribozyme enhances self-cleavage activity. RNA 11, 1788–1794 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Norrander, J., Kempe, T. & Messing, J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26, 101–106 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Donahue, C.P., Yadava, R.S., Nesbitt, S.M. & Fedor, M.J. The kinetic mechanism of the hairpin ribozyme in vivo: influence of RNA helix stability on intracellular cleavage kinetics. J. Mol. Biol. 295, 693–707 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dunn, A.K. & Handelsman, J. A vector for promoter trapping in Bacillus cereus. Gene 226, 297–305 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Geiser, M., Cebe, R., Drewello, D. & Schmitz, R. Integration of PCR fragments at any specific site within cloning vectors without the use of restriction enzymes and DNA ligase. Biotechniques 31, 88–90, 92 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. He, F., Amrani, N., Johansson, M.J.O. & Jacobson, A. Qualitative and quantitative assessment of the activity of the yeast nonsense-mediated mRNA decay pathway. in RNA Turnover in Eukaryotes: Analysis of Specialized and Quality Control RNA Decay Pathways Vol. 449, 127–147 (Elsevier Academic Press, San Diego, 2008).

  34. Milligan, J.F. & Uhlenbeck, O.C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Long, D.M. & Uhlenbeck, O.C. Kinetic characterization of intramolecular and intermolecular hammerhead RNAs with stem II deletions. Proc. Natl. Acad. Sci. USA 91, 6977–6981 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng, Y. & Prusoff, W.H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  PubMed  Google Scholar 

  37. Anagnostopoulos, C. & Spizizen, J. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 81, 741–746 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant RO1 GM062277 (M.J.F.). P.Y.W. was supported by a graduate fellowship from The Skaggs Institute for Chemical Biology. We thank J. Pogliano for advice regarding the Bacillus subtilis experiments, J. Viladoms and M. Saha for assistance with plasmid constructions, and J.V. for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

P.Y.W. and M.J.F. conceived of and designed the experiments, analyzed the data and wrote the paper. P.Y.W. conducted the experiments.

Corresponding author

Correspondence to Martha J Fedor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Table 1 (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, P., Fedor, M. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. Nat Struct Mol Biol 18, 359–363 (2011). https://doi.org/10.1038/nsmb.1989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb.1989

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing