Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

Abstract

The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the μ1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-μ1 interface, which encompasses the cargo-recognition site of μ1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in μ1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on μ1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of Nef (cyan)–MHC-I CD (magenta)–μ1 (green) complex.
Figure 2: Nef compensates for an incomplete sorting motif in MHC-I.
Figure 3: Critical electrostatic interactions in the MHC-I CD–Nef–μ1 complex and a Nef-induced conformational change in μ1.
Figure 4: N-terminal helix of Nef positions the Nef core domain near the membrane for efficient interactions with MHC-I and μ1.
Figure 5: Distinct differences between μ1 and μ2 explain selective use of AP1 over AP2 by Nef for MHC-I downregulation.
Figure 6: Model of HIV-1 Nef-mediated association of MHC-I cytoplasmic domain with AP1 at lipid membrane.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Collins, K.L., Chen, B.K., Kalams, S.A., Walker, B.D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401 (1998).

    Article  CAS  Google Scholar 

  2. Schwartz, O., Marechal, V., Le Gall, S., Lemonnier, F. & Heard, J.M. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat. Med. 2, 338–342 (1996).

    Article  CAS  Google Scholar 

  3. Kirchhoff, F., Schindler, M., Specht, A., Arhel, N. & Munch, J. Role of Nef in primate lentiviral immunopathogenesis. Cell Mol. Life Sci. 65, 2621–2636 (2008).

    Article  CAS  Google Scholar 

  4. Deacon, N.J. et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270, 988–991 (1995).

    Article  CAS  Google Scholar 

  5. Kirchhoff, F., Greenough, T.C., Brettler, D.B., Sullivan, J.L. & Desrosiers, R.C. Absence of intact Nef sequences in a long-term survivor with nonprogressive Hiv-1 infection. N. Engl. J. Med. 332, 228–232 (1995).

    Article  CAS  Google Scholar 

  6. Le Gall, S. et al. Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 8, 483–495 (1998).

    Article  CAS  Google Scholar 

  7. Roeth, J.F., Williams, M., Kasper, M.R., Filzen, T.M. & Collins, K.L. HIV-1 Nef disrupts MHC-1 trafficking by recruiting AP-1 to the MHC-1 cytoplasmic tail. J. Cell Biol. 167, 903–913 (2004).

    Article  CAS  Google Scholar 

  8. Noviello, C.M., Benichou, S. & Guatelli, J.C. Cooperative binding of the class I major histocompatibility complex cytoplasmic domain and human immunodeficiency virus type 1 Nef to the endosomal AP-1 complex via its mu subunit. J. Virol. 82, 1249–1258 (2008).

    Article  CAS  Google Scholar 

  9. Wonderlich, E.R., Williams, M. & Collins, K.L. The tyrosine binding pocket in the adaptor protein 1 (AP-1) μ1 subunit is necessary for nef to recruit AP-1 to the major histocompatibility complex class I cytoplasmic tail. J. Biol. Chem. 283, 3011–3022 (2008).

    Article  CAS  Google Scholar 

  10. Singh, R.K., Lau, D., Noviello, C.M., Ghosh, P. & Guatelli, J.C. An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the musubunit of the AP-1 endosomal coat complex. PLoS ONE 4, e8364 (2009).

    Article  Google Scholar 

  11. Ohno, H. Clathrin-associated adaptor protein complexes. J. Cell Sci. 119, 3719–3721 (2006).

    Article  CAS  Google Scholar 

  12. Traub, L.M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 10, 583–596 (2009).

    Article  CAS  Google Scholar 

  13. Schaefer, M.R., Wonderlich, E.R., Roeth, J.F., Leonard, J.A. & Collins, K.L. HIV-1 Nef targets MHC-I and CD4 for degradation via a final common beta-COP-dependent pathway in T cells. PLoS Pathog. 4, e1000131 (2008).

    Article  Google Scholar 

  14. Owen, D.J. & Evans, P.R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282, 1327–1332 (1998).

    Article  CAS  Google Scholar 

  15. Lee, C.H., Saksela, K., Mirza, U.A., Chait, B.T. & Kuriyan, J. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 85, 931–942 (1996).

    Article  CAS  Google Scholar 

  16. Arold, S. et al. The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling. Structure 5, 1361–1372 (1997).

    Article  CAS  Google Scholar 

  17. Grzesiek, S. et al. Refined solution structure and backbone dynamics of HIV-1 Nef. Protein Sci. 6, 1248–1263 (1997).

    Article  CAS  Google Scholar 

  18. Horenkamp, F.A. et al. Conformation of the dileucine-based sorting motif in HIV-1 Nef revealed by intermolecular domain assembly. Traffic 12, 867–877 (2011).

    Article  CAS  Google Scholar 

  19. Greenberg, M.E., Iafrate, A.J. & Skowronski, J. The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. EMBO J. 17, 2777–2789 (1998).

    Article  CAS  Google Scholar 

  20. Mangasarian, A., Piguet, V., Wang, J.K., Chen, Y.L. & Trono, D. Nef-induced CD4 and major histocompatibility complex class I (MHC-I) down-regulation are governed by distinct determinants: N-terminal alpha helix and proline repeat of Nef selectively regulate MHC-I trafficking. J. Virol. 73, 1964–1973 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Guy, B. et al. HIV F/3′ orf encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 330, 266–269 (1987).

    Article  CAS  Google Scholar 

  22. Heldwein, E.E. et al. Crystal structure of the clathrin adaptor protein 1 core. Proc. Natl. Acad. Sci. USA 101, 14108–14113 (2004).

    Article  CAS  Google Scholar 

  23. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  Google Scholar 

  24. Nooren, I.M. & Thornton, J.M. Structural characterisation and functional significance of transient protein-protein interactions. J. Mol. Biol. 325, 991–1018 (2003).

    Article  CAS  Google Scholar 

  25. Craig, H.M., Reddy, T.R., Riggs, N.L., Dao, P.P. & Guatelli, J.C. Interactions of HIV-1 Nef with the mu subunits of adaptor protein complexes 1, 2, and 3: Role of the dileucine-based sorting motif. Virology 271, 9–17 (2000).

    Article  CAS  Google Scholar 

  26. Williams, M., Roeth, J.F., Kasper, M.R., Filzen, T.M. & Collins, K.L. Human immunodeficiency virus type 1 Nef domains required for disruption of major histocompatibility complex class I trafficking are also necessary for coprecipitation of Nef with HLA-A2. J. Virol. 79, 632–636 (2005).

    Article  CAS  Google Scholar 

  27. Riggs, N.L., Craig, H.M., Pandori, M.W. & Guatelli, J.C. The dileucine-based sorting motif in HIV-1 Nef is not required for down-regulation of class I MHC. Virology 258, 203–207 (1999).

    Article  CAS  Google Scholar 

  28. Baugh, L.L., Garcia, J.V. & Foster, J.L. Functional characterization of the human immunodeficiency virus type 1 Nef acidic domain. J. Virol. 82, 9657–9667 (2008).

    Article  CAS  Google Scholar 

  29. Liu, L.X. et al. Mutation of a conserved residue (D123) required for oligomerization of human immunodeficiency virus type 1 Nef protein abolishes interaction with human thioesterase and results in impairment of Nef biological functions. J. Virol. 74, 5310–5319 (2000).

    Article  CAS  Google Scholar 

  30. Cohen, G.B. et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671 (1999).

    Article  CAS  Google Scholar 

  31. Specht, A. et al. Selective downmodulation of HLA-A and -B by Nef alleles from different groups of primate lentiviruses. Virology 373, 229–237 (2008).

    Article  CAS  Google Scholar 

  32. Geyer, M., Fackler, O.T. & Peterlin, B.M. Structure-function relationships in HIV-1 Nef. EMBO Rep. 2, 580–585 (2001).

    Article  CAS  Google Scholar 

  33. Craig, H.M., Pandori, M.W. & Guatelli, J.C. Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 downregulation and optimal viral infectivity. Proc. Natl. Acad. Sci. USA 95, 11229–11234 (1998).

    Article  CAS  Google Scholar 

  34. Chaudhuri, R., Lindwasser, O.W., Smith, W.J., Hurley, J.H. & Bonifacino, J.S. Downregulation of CD4 by human immunodeficiency virus type 1 Nef is dependent on clathrin and involves direct interaction of Nef with the AP2 clathrin adaptor. J. Virol. 81, 3877–3890 (2007).

    Article  CAS  Google Scholar 

  35. Jackson, L.P. et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141, 1220–1229 (2010).

    Article  CAS  Google Scholar 

  36. Stamnes, M.A. & Rothman, J.E. The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell 73, 999–1005 (1993).

    Article  CAS  Google Scholar 

  37. Traub, L.M., Ostrom, J.A. & Kornfeld, S. Biochemical dissection of AP-1 recruitment onto Golgi membranes. J. Cell Biol. 123, 561–573 (1993).

    Article  CAS  Google Scholar 

  38. Janvier, K. et al. HIV-1 Nef stabilizes the association of adaptor protein complexes with membranes. J. Biol. Chem. 278, 8725–8732 (2003).

    Article  CAS  Google Scholar 

  39. Wonderlich, E.R., Williams, M. & Collins, K.L. The tyrosine binding pocket in the adaptor protein 1 (AP-1) mu1 subunit is necessary for Nef to recruit AP-1 to the major histocompatibility complex class I cytoplasmic tail. J. Biol. Chem. 283, 3011–3022 (2008).

    Article  CAS  Google Scholar 

  40. Janvier, K. et al. Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 gamma-sigma1 and AP-3 delta-sigma3 hemicomplexes. J. Cell Biol. 163, 1281–1290 (2003).

    Article  CAS  Google Scholar 

  41. Chaudhuri, R., Mattera, R., Lindwasser, O.W., Robinson, M.S. & Bonifacino, J.S. A basic patch on α-adaptin is required for binding of human immunodeficiency virus type 1 Nef and cooperative assembly of a CD4-Nef-AP-2 complex. J. Virol. 83, 2518–2530 (2009).

    Article  CAS  Google Scholar 

  42. Lizée, G. et al. Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat. Immunol. 4, 1065–1073 (2003).

    Article  Google Scholar 

  43. Ghosh, P. & Kornfeld, S. The cytoplasmic tail of the cation-independent mannose 6-phosphate receptor contains four binding sites for AP-1. Arch. Biochem. Biophys. 426, 225–230 (2004).

    Article  CAS  Google Scholar 

  44. Xue, X.Y. et al. Production of authentic SARS-CoV M-pro with enhanced activity: Application as a novel tag-cleavage endopeptidase for protein overproduction. J. Mol. Biol. 366, 965–975 (2007).

    Article  CAS  Google Scholar 

  45. Xue, X.Y. et al. Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design. J. Virol. 82, 2515–2527 (2008).

    Article  CAS  Google Scholar 

  46. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin Fkbp-12 complexes with Fk506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).

    Article  CAS  Google Scholar 

  47. Peränen, J., Rikkonen, M., Hyvonen, M. & Kaariainen, L. T7 vectors with a modified T7lac promoter for expression of proteins in Escherichia coli. Anal. Biochem. 236, 371–373 (1996).

    Article  Google Scholar 

  48. Chayen, N.E., Stewart, P.D.S., Maeder, D.L. & Blow, D.M. An automated system for microbatch protein crystallization and screening. J. Appl. Crystallogr. 23, 297–302 (1990).

    Article  CAS  Google Scholar 

  49. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  50. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification, and model building. J. Synchrotron Radiat. 11, 49–52 (2004).

    Article  CAS  Google Scholar 

  51. Bailey, S. The Ccp4 suite—programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

    Article  Google Scholar 

  52. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 56, 1622–1624 (2000).

    Article  CAS  Google Scholar 

  53. Cowtan, K. & Main, P. Miscellaneous algorithms for density modification. Acta Crystallogr. D Biol. Crystallogr. 54, 487–493 (1998).

    Article  CAS  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  55. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  56. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  57. Little, S.J. et al. Cell surface CD4 downregulation and resistance to superinfection induced by a defective provirus of HIV-1. Virology 205, 578–582 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Modis and L. Wolfe for assistance in data collection. We also thank the staff at the Advanced Photon Source beamline 24-ID and the National Synchrotron Light Source beamline X29. This work was supported by US National Institutes of Health (NIH) grants AI097064 (Y.X.), AI076040 and AI038201 (J.G.) as well as by The James B. Pendleton Charitable Trust. R.S. was supported by grants from the California HIV-AIDS Research Program and the UCSD Center for AIDS Research (CFAR) developmental program P30 AI36214.

Author information

Authors and Affiliations

Authors

Contributions

X.J., J.G. and Y.X. designed the research; X.J., R.S., S.H., H.Y. and Y.X. performed the research; X.J., R.S., S.H., J.G. and Y.X. analyzed data; J.G. and Y.X. supervised the project; and X.J., J.G. and Y.X. wrote the manuscript.

Corresponding author

Correspondence to Yong Xiong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, X., Singh, R., Homann, S. et al. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef. Nat Struct Mol Biol 19, 701–706 (2012). https://doi.org/10.1038/nsmb.2328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb.2328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing