Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural definition of the F-actin–binding THATCH domain from HIP1R

Abstract

Huntingtin-interacting protein-1 related (HIP1R) has a crucial protein-trafficking role, mediating associations between actin and clathrin-coated structures at the plasma membrane and trans-Golgi network. Here, we characterize the F-actin–binding region of HIP1R, termed the talin-HIP1/R/Sla2p actin-tethering C-terminal homology (THATCH) domain. The 1.9-Å crystal structure of the human HIP1R THATCH core reveals a large sequence-conserved surface patch created primarily by residues from the third and fourth helices of a unique five-helix bundle. Point mutations of seven contiguous patch residues produced significant decreases in F-actin binding. We also show that THATCH domains have a conserved C-terminal latch capable of oligomerizing the core, thereby modulating F-actin engagement. Collectively, these results establish a framework for investigating the links between endocytosis and actin dynamics mediated by THATCH domain–containing proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence conservation and occurrence of THATCH domains.
Figure 2: Crystal structure of the HIP1R THATCH domain core.
Figure 3: HIP1R THATCH core binds F-actin to a lesser extent than HIP1R THATCH owing to loss of oligomerization through the THATCH domain latch.
Figure 4: Surface analysis of the HIP1R THATCH core reveals a potential F-actin–binding surface.
Figure 5: Mutational analysis of the HIP1R THATCH domain reveals an F-actin–binding surface.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Cremona, O. & De Camilli, P. Phosphoinositides in membrane traffic at the synapse. J. Cell Sci. 114, 1041–1052 (2001).

    CAS  PubMed  Google Scholar 

  2. Owen, D.J., Collins, B.M. & Evans, P.R. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell Dev. Biol. 20, 153–191 (2004).

    Article  CAS  Google Scholar 

  3. Ritter, B. & McPherson, P.S. Molecular mechanisms in clathrin-mediated membrane budding. in Regulatory Mechanisms of Intracellular Membrane Transport, Vol. 10 (eds. Keranen, S. & Jantti, J.) 9–38 (Springer-Verlag, Berlin, Heidelberg, 2004).

    Google Scholar 

  4. Engqvist-Goldstein, A.E. & Drubin, D.G. Actin assembly and endocytosis: from yeast to mammals. Annu. Rev. Cell Dev. Biol. 19, 287–332 (2003).

    Article  CAS  Google Scholar 

  5. McPherson, P.S. The endocytic machinery at an interface with the actin cytoskeleton: a dynamic, hip intersection. Trends Cell Biol. 12, 312–315 (2002).

    Article  CAS  Google Scholar 

  6. Merrifield, C.J. Seeing is believing: imaging actin dynamics at single sites of endocytosis. Trends Cell Biol. 14, 352–358 (2004).

    Article  CAS  Google Scholar 

  7. Munn, A.L. Molecular requirements for the internalisation step of endocytosis: insights from yeast. Biochim. Biophys. Acta 1535, 236–257 (2001).

    Article  CAS  Google Scholar 

  8. Kubler, E. & Riezman, H. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J. 12, 2855–2862 (1993).

    Article  CAS  Google Scholar 

  9. Ayscough, K.R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997).

    Article  CAS  Google Scholar 

  10. Fujimoto, L.M., Roth, R., Heuser, J.E. & Schmid, S.L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161–171 (2000).

    Article  CAS  Google Scholar 

  11. Yarar, D., Waterman-Storer, C.M. & Schmid, S.L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell 16, 964–975 (2005).

    Article  CAS  Google Scholar 

  12. Engqvist-Goldstein, A.E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell 15, 1666–1679 (2004).

    Article  CAS  Google Scholar 

  13. Merrifield, C.J., Feldman, M.E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4, 691–698 (2002).

    Article  CAS  Google Scholar 

  14. Carreno, S., Engqvist-Goldstein, A.E., Zhang, C.X., McDonald, K.L. & Drubin, D.G. Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J. Cell Biol. 165, 781–788 (2004).

    Article  CAS  Google Scholar 

  15. Kessels, M.M., Engqvist-Goldstein, A.E., Drubin, D.G. & Qualmann, B. Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J. Cell Biol. 153, 351–366 (2001).

    Article  CAS  Google Scholar 

  16. Cao, H. et al. Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol. Cell. Biol. 23, 2162–2170 (2003).

    Article  CAS  Google Scholar 

  17. Qualmann, B. & Kelly, R.B. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol. 148, 1047–1062 (2000).

    Article  CAS  Google Scholar 

  18. Hussain, N.K. et al. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat. Cell Biol. 3, 927–932 (2001).

    Article  CAS  Google Scholar 

  19. Buss, F., Arden, S.D., Lindsay, M., Luzio, J.P. & Kendrick-Jones, J. Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J. 20, 3676–3684 (2001).

    Article  CAS  Google Scholar 

  20. Merrifield, C.J., Qualmann, B., Kessels, M.M. & Almers, W. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol. 83, 13–18 (2004).

    Article  CAS  Google Scholar 

  21. Engqvist-Goldstein, A.E., Kessels, M.M., Chopra, V.S., Hayden, M.R. & Drubin, D.G. An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J. Cell Biol. 147, 1503–1518 (1999).

    Article  CAS  Google Scholar 

  22. Gervais, F.G. et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat. Cell Biol. 4, 95–105 (2002).

    Article  CAS  Google Scholar 

  23. Chopra, V.S. et al. HIP12 is a non-proapoptotic member of a gene family including HIP1, an interacting protein with huntingtin. Mamm. Genome 11, 1006–1015 (2000).

    Article  CAS  Google Scholar 

  24. Metzler, M. et al. HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. J. Biol. Chem. 276, 39271–39276 (2001).

    Article  CAS  Google Scholar 

  25. Mishra, S.K. et al. Clathrin- and AP-2-binding sites in HIP1 uncover a general assembly role for endocytic accessory proteins. J. Biol. Chem. 276, 46230–46236 (2001).

    Article  CAS  Google Scholar 

  26. Legendre-Guillemin, V., Wasiak, S., Hussain, N.K., Angers, A. & McPherson, P.S. ENTH/ANTH proteins and clathrin-mediated membrane budding. J. Cell Sci. 117, 9–18 (2004).

    Article  CAS  Google Scholar 

  27. Brett, T.J., Traub, L.M. & Fremont, D.H. Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure (Camb). 10, 797–809 (2002).

    Article  CAS  Google Scholar 

  28. Legendre-Guillemin, V. et al. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J. Biol. Chem. 277, 19897–19904 (2002).

    Article  CAS  Google Scholar 

  29. Chen, C.Y. & Brodsky, F.M. Huntingtin-interacting protein 1 (Hip1) and Hip1-related protein (Hip1R) bind the conserved sequence of clathrin light chains and thereby influence clathrin assembly in vitro and actin distribution in vivo. J. Biol. Chem. 280, 6109–6117 (2005).

    Article  CAS  Google Scholar 

  30. Legendre-Guillemin, V. et al. Huntingtin interacting protein 1 (HIP1) regulates clathrin assembly through direct binding to the regulatory region of the clathrin light chain. J. Biol. Chem. 280, 6101–6108 (2005).

    Article  CAS  Google Scholar 

  31. McCann, R.O. & Craig, S.W. The I/LWEQ module: a conserved sequence that signifies F-actin binding in functionally diverse proteins from yeast to mammals. Proc. Natl. Acad. Sci. USA 94, 5679–5684 (1997).

    Article  CAS  Google Scholar 

  32. McCann, R.O. & Craig, S.W. Functional genomic analysis reveals the utility of the I/LWEQ module as a predictor of protein:actin interaction. Biochem. Biophys. Res. Commun. 266, 135–140 (1999).

    Article  CAS  Google Scholar 

  33. Engqvist-Goldstein, A.E. et al. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J. Cell Biol. 154, 1209–1223 (2001).

    Article  CAS  Google Scholar 

  34. Kowanetz, K. et al. CIN85 associates with multiple effectors controlling intracellular trafficking of epidermal growth factor receptors. Mol. Biol. Cell 15, 3155–3166 (2004).

    Article  CAS  Google Scholar 

  35. Kaksonen, M., Sun, Y. & Drubin, D.G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003).

    Article  CAS  Google Scholar 

  36. Baggett, J.J., D'Aquino, K.E. & Wendland, B. The Sla2p talin domain plays a role in endocytosis in Saccharomyces cerevisiae. Genetics 165, 1661–1674 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  38. Bakolitsa, C., de Pereda, J.M., Bagshaw, C.R., Critchley, D.R. & Liddington, R.C. Crystal structure of the vinculin tail suggests a pathway for activation. Cell 99, 603–613 (1999).

    Article  CAS  Google Scholar 

  39. Breiter, D.R. et al. Molecular structure of an apolipoprotein determined at 2.5-Å resolution. Biochemistry 30, 603–608 (1991).

    Article  CAS  Google Scholar 

  40. Senetar, M.A., Foster, S.J. & McCann, R.O. Intrasteric inhibition mediates the interaction of the I/LWEQ module proteins Talin1, Talin2, Hip1, and Hip12 with actin. Biochemistry 43, 15418–15428 (2004).

    Article  CAS  Google Scholar 

  41. Dominguez, R. Actin-binding proteins–a unifying hypothesis. Trends Biochem. Sci. 29, 572–578 (2004).

    Article  CAS  Google Scholar 

  42. Lijnzaad, P., Berendsen, H.J. & Argos, P. Hydrophobic patches on the surfaces of protein structures. Proteins 25, 389–397 (1996).

    Article  CAS  Google Scholar 

  43. Mills, I.G. et al. Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors. J. Cell Biol. 170, 191–200 (2005).

    Article  CAS  Google Scholar 

  44. Gaidarov, I., Krupnick, J.G., Falck, J.R., Benovic, J.L. & Keen, J.H. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J. 18, 871–881 (1999).

    Article  CAS  Google Scholar 

  45. Ford, M.G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    Article  CAS  Google Scholar 

  46. Ford, M.G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  Google Scholar 

  47. Mishra, S.K. et al. Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J. 21, 4915–4926 (2002).

    Article  CAS  Google Scholar 

  48. Mishra, S.K., Watkins, S.C. & Traub, L.M. The autosomal recessive hypercholesterolemia (ARH) protein interfaces directly with the clathrin-coat machinery. Proc. Natl. Acad. Sci. USA 99, 16099–16104 (2002).

    Article  CAS  Google Scholar 

  49. Metzler, M. et al. Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking. EMBO J. 22, 3254–3266 (2003).

    Article  CAS  Google Scholar 

  50. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  51. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  52. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  53. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D Biol. Crystallogr. 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  54. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  55. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47 (Pt. 2), 110–119 (1991).

    Article  Google Scholar 

  56. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  57. O'Shannessy, D.J., Brigham-Burke, M., Soneson, K.K., Hensley, P. & Brooks, I. Determination of rate and equilibrium binding constants for macromolecular interactions by surface plasmon resonance. Methods Enzymol. 240, 323–349 (1994).

    Article  CAS  Google Scholar 

  58. Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  59. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  60. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Heuser for helpful discussions regarding his deep-etch EM studies of HIP1R, J. Alexander-Brett for assistance with SPR data analysis, L. Traub and C. Nelson for critical comments on the manuscript and Z. Yang and J. Philie for technical assistance. This work was supported by US National Institutes of Health grant GM62414-04 (Midwest Center for Structural Genomics, to D.H.F.; ID code APC35300) and by Canadian Institutes of Health Research grant MOP-15396 (to P.S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daved H Fremont.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brett, T., Legendre-Guillemin, V., McPherson, P. et al. Structural definition of the F-actin–binding THATCH domain from HIP1R. Nat Struct Mol Biol 13, 121–130 (2006). https://doi.org/10.1038/nsmb1043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb1043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing