Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Slow translocon gating causes cytosolic exposure of transmembrane and lumenal domains during membrane protein integration

Abstract

Integral membrane proteins are cotranslationally inserted into the endoplasmic reticulum via the protein translocation channel, or translocon, which mediates the transport of lumenal domains, retention of cytosolic domains and integration of transmembrane spans into the phospholipid bilayer. Upon translocon binding, transmembrane spans interact with a lateral gate, which regulates access to membrane phospholipids, and a lumenal gate, which controls the translocation of soluble domains. We analyzed the in vivo kinetics of integration of model membrane proteins in Saccharomyces cerevisiae using ubiquitin translocation assay reporters. Our findings indicate that the conformational changes in the translocon that permit opening of the lumenal and lateral channel gates occur less rapidly than elongation of the nascent polypeptide. Transmembrane spans and lumenal domains are therefore exposed to the cytosol during integration of a polytopic membrane protein, which may pose a challenge to the fidelity of membrane protein integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetics of Dap2 reporter integration.
Figure 2: Translocon gating by Suc2 RNCs and Dap2 RNCs.
Figure 3: Translocon gating by a polytopic membrane protein.
Figure 4: Effect of loop insertions on UTA reporter cleavage.
Figure 5: Targeting of membrane proteins by the Suc2p signal sequence.
Figure 6: Cytosolic exposure of TM spans and lumenal domains during in vivo integration of a polytopic membrane protein.

Similar content being viewed by others

References

  1. Wilson, C., Connolly, T., Morrison, T. & Gilmore, R. Integration of membrane proteins into the endoplasmic reticulum requires GTP. J. Cell Biol. 107, 69–77 (1988).

    Article  CAS  Google Scholar 

  2. Do, H., Falcone, D., Lin, J., Andrews, D.W. & Johnson, A.E. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369–378 (1996).

    Article  CAS  Google Scholar 

  3. Heinrich, S.U., Mothes, W., Brunner, J. & Rapoport, T.A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000).

    Article  CAS  Google Scholar 

  4. Beltzer, J.P. et al. Charged residues are major determinants of the transmembrane orientation of a signal-anchor sequence. J. Biol. Chem. 266, 973–978 (1991).

    CAS  PubMed  Google Scholar 

  5. Hartmann, E., Rapoport, T.A. & Lodish, H.F. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc. Natl. Acad. Sci. USA 86, 5786–5790 (1989).

    Article  CAS  Google Scholar 

  6. Wahlberg, J.M. & Spiess, M. Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain. J. Cell Biol. 137, 555–562 (1997).

    Article  CAS  Google Scholar 

  7. Denzer, A.J., Nabholz, C.E. & Spiess, M. Transmembrane orientation of signal anchor proteins is affected by the folding state but not the size of the N-terminal domain. EMBO J. 14, 6311–6317 (1995).

    Article  CAS  Google Scholar 

  8. Mothes, W. et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89, 523–533 (1997).

    Article  CAS  Google Scholar 

  9. Heinrich, S.U. & Rapoport, T.A. Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane. EMBO J. 22, 3654–3663 (2003).

    Article  CAS  Google Scholar 

  10. McCormick, P.J., Miao, Y., Shao, Y., Lin, J. & Johnson, A.E. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell 12, 329–341 (2003).

    Article  CAS  Google Scholar 

  11. Sadlish, H., Pitonzo, D., Johnson, A.E. & Skach, W.R. Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol. 12, 870–878 (2005).

    Article  CAS  Google Scholar 

  12. Liao, S., Lin, J., Do, H. & Johnson, A.E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997).

    Article  CAS  Google Scholar 

  13. Haigh, N.G. & Johnson, A.E. A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. J. Cell Biol. 156, 261–270 (2002).

    Article  CAS  Google Scholar 

  14. Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).

    Article  CAS  Google Scholar 

  15. Plath, K., Mothes, W., Wilkinson, B.M., Stirling, C.J. & Rapoport, T.A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998).

    Article  CAS  Google Scholar 

  16. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  Google Scholar 

  17. Rapoport, T.A., Goder, V., Heinrich, S.U. & Matlack, K.E. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14, 568–575 (2004).

    Article  CAS  Google Scholar 

  18. Morgan, D.G., Menetret, J.F., Neuhof, A., Rapoport, T.A. & Akey, C.W. Structure of the mammalian ribosome-channel complex at 17 Å resolution. J. Mol. Biol. 324, 871–886 (2002).

    Article  CAS  Google Scholar 

  19. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

    Article  CAS  Google Scholar 

  20. Johnsson, N. & Varshavsky, A. Ubiquitin-assisted dissection of protein transport across membranes. EMBO J. 13, 2686–2698 (1994).

    Article  CAS  Google Scholar 

  21. Ng, D.T., Brown, J.D. & Walter, P. Signal sequences specify the targeting route to the endoplasmic reticulum. J. Cell Biol. 134, 269–278 (1996).

    Article  CAS  Google Scholar 

  22. Mason, N., Ciufo, L.F. & Brown, J.D. Elongation arrest is a physiologically important function of signal recognition particle. EMBO J. 19, 4164–4174 (2000).

    Article  CAS  Google Scholar 

  23. Jungnickel, B. & Rapoport, T.A. A posttranslational signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82, 261–270 (1995).

    Article  CAS  Google Scholar 

  24. Belin, D., Bost, S., Vassalli, J.D. & Strub, K. A two-step recognition of signal sequences determines the translocation efficiency of proteins. EMBO J. 15, 468–478 (1996).

    Article  CAS  Google Scholar 

  25. Goder, V. & Spiess, M. Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. EMBO J. 22, 3645–3653 (2003).

    Article  CAS  Google Scholar 

  26. Ogg, S.C., Barz, W.P. & Walter, P. A functional GTPase domain, but not its transmembrane domain, is required for function of the SRP receptor β-subunit. J. Cell Biol. 142, 341–354 (1998).

    Article  CAS  Google Scholar 

  27. Cheng, Z., Jiang, Y., Mandon, E.C. & Gilmore, R. Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J. Cell Biol. 168, 67–77 (2005).

    Article  CAS  Google Scholar 

  28. Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA 91, 10340–10344 (1994).

    Article  CAS  Google Scholar 

  29. Goder, V., Crottet, P. & Spiess, M. In vivo kinetics of protein targeting to the endoplasmic reticulum determined by site-specific phosphorylation. EMBO J. 19, 6704–6712 (2000).

    Article  CAS  Google Scholar 

  30. Connolly, T., Collins, P. & Gilmore, R. Access of proteinase K to partially translocated nascent polypeptides in intact and detergent-solubilized membranes. J. Cell Biol. 108, 299–307 (1989).

    Article  CAS  Google Scholar 

  31. Crowley, K.S., Reinhart, G.D. & Johnson, A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115 (1993).

    Article  CAS  Google Scholar 

  32. Braakman, I., Hoover-Litty, H., Wagner, K.R. & Helenius, A. Folding of influenza hemagglutinin in the endoplasmic reticulum. J. Cell Biol. 114, 401–411 (1991).

    Article  CAS  Google Scholar 

  33. Hershey, J.W. Translational control in mammalian cells. Annu. Rev. Biochem. 60, 717–755 (1991).

    Article  CAS  Google Scholar 

  34. Crowley, K.S., Liao, S., Worrell, V.E., Reinhart, G.D. & Johnson, A.E. Secretory proteins move through the endoplasmic reticulum via an aqueous, gated pore. Cell 78, 461–471 (1994).

    Article  CAS  Google Scholar 

  35. Buck, T.M. & Skach, W.R. Differential stability of biogenesis intermediates reveals a common pathway for aquaporin-1 topological maturation. J. Biol. Chem. 280, 261–269 (2005).

    Article  CAS  Google Scholar 

  36. Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005).

    Article  CAS  Google Scholar 

  37. Green, N. & Walter, P. C-terminal sequences can inhibit the insertion of membrane proteins into the endoplasmic reticulum of Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 276–282 (1992).

    Article  CAS  Google Scholar 

  38. Kim, H., Melen, K. & von Heijne, G. Topology models for 37 Saccharomyces cerevisiae membrane proteins based on C-terminal reporter fusions and predictions. J. Biol. Chem. 278, 10208–10213 (2003).

    Article  CAS  Google Scholar 

  39. Rothblatt, J. & Schekman, R. A hitchhiker's guide to the analysis of the secretory pathway in yeast. Methods Cell Biol. 32, 3–36 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Brown (University of Newcastle) for providing plasmid pJEY117 and C. Stirling (University of Manchester) for providing yeast strains. This work was supported by US National Institutes of Health grant GM35687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reid Gilmore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Z., Gilmore, R. Slow translocon gating causes cytosolic exposure of transmembrane and lumenal domains during membrane protein integration. Nat Struct Mol Biol 13, 930–936 (2006). https://doi.org/10.1038/nsmb1146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb1146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing