Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome

Abstract

HIV-1 deleted for the vif accessory gene encapsidates the cellular cytidine deaminase APOBEC3G. Upon infection, the encapsidated APOBEC3G induces G→A mutations in the viral reverse transcripts. The G→A mutations result either from C→U deamination of the minus strand or deamination of both strands followed by repair of the plus strand. We report here that minus-strand deamination occurred over the length of the virus genome, preferentially at CCCA sequences, with a graded frequency in the 5′→3′ direction. APOBEC3G induced previously undetected C→T mutations in the 5′ U3 and the primer-binding site, both of which become transiently single-stranded during reverse transcription. In vitro, APOBEC3G bound and deaminated single-stranded DNA (ssDNA) but not double-stranded DNA (dsDNA) or DNA-RNA hybrids. We propose that the requirement for ssDNA accounts for the minus-strand mutations, the 5′→3′ graded frequency of deamination and the rare C→T mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graded frequency of G→A mutations induced by APOBEC3G.
Figure 2: Target sequence preference of APOBEC3G.
Figure 3: Analysis of integrated proviruses generated by Δvif APOBEC3G+ viruses.
Figure 4: Human APOBEC3G deaminates and binds ssDNA.
Figure 5: Proposed mechanism of APOBEC3G-mediated deamination of HIV reverse transcripts.

Similar content being viewed by others

References

  1. Strebel, K. et al. The HIV 'A' (sor) gene product is essential for virus infectivity. Nature 328, 728–730 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. von Schwedler, U., Song, J., Aiken, C. & Trono, D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J. Virol. 67, 4945–4955 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gabuzda, D.H. et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol. 66, 6489–6495 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Madani, N. & Kabat, D. An endogenous Inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vlf protein. J. Virol. 72, 10251–10255 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Simon, J.H. et al. The regulation of primate immunodeficiency virus infectivity by Vlf is cell species restricted: a role for Vlf in determining virus host range and cross-species transmission. EMBO J. 17, 1259–1267 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Goncalves, J., Korin, Y., Zack, J. & Gabuzda, D. Role of Vif in human immunodeficiency virus type 1 reverse transcription. J. Virol. 70, 8701–8709 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Simon, J.H. & Malim, M.H. The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J. Virol. 70, 5297–5305 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A.J. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Harris, R.S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Stopak, K., de Noronha, C., Yonemoto, W. & Greene, W.C. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol. Cell 12, 591–601 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Marin, M., Rose, K.M., Kozak, S.L. & Kabat, D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat. Med. 9, 1398–1403 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Sheehy, A.M., Gaddis, N.C. & Malim, M.H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 9, 1404–1407 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, Y., Sowden, M.P. & Smith, H.C. Induction of cytidine to uridine editing on cytoplasmic apolipoprotein B mRNA by overexpressing APOBEC-1. J. Biol. Chem. 275, 22663–22669 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Lau, P.P. et al. A DnaJ protein, apobec-1-binding protein-2, modulates apolipoprotein B mRNA editing. J. Biol. Chem. 276, 46445–46452 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Anant, S., MacGinnitie, A.J. & Davidson, N.O. apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, is a novel RNA-binding protein. J. Biol. Chem. 270, 14762–14767 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Muto, T., Muramatsu, M., Taniwaki, M., Kinoshita, K. & Honjo, T. Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics 68, 85–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Wedekind, J.E., Dance, G.S., Sowden, M.P. & Smith, H.C. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 19, 207–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Schrofelbauer, B., Chen, D. & Landau, N.R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl. Acad. Sci. USA 101, 3927–3932 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schroder, A.R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single-stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Charneau, P. & Clavel, F. A single-stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract. J. Virol. 65, 2415–2421 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vartanian, J.P., Henry, M. & Wain-Hobson, S. Sustained G→A hypermutation during reverse transcription of an entire human immunodeficiency virus type 1 strain Vau group O genome. J. Gen. Virol. 83, 801–805 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Borman, A.M., Quillent, C., Charneau, P., Kean, K.M. & Clavel, F. A highly defective HIV-1 group O provirus: evidence for the role of local sequence determinants in G→A hypermutation during negative-strand viral DNA synthesis. Virology 208, 601–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Berkhout, B. & van Hemert, F.J. The unusual nucleotide content of the HIV RNA genome results in a biased amino acid composition of HIV proteins. Nucleic Acids Res. 22, 1705–1711 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berkhout, B., Grigoriev, A., Bakker, M. & Lukashov, V.V. Codon and amino acid usage in retroviral genomes is consistent with virus-specific nucleotide pressure. AIDS Res. Hum. Retroviruses 18, 133–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Paxton, W., Connor, R.I. & Landau, N.R. Incorporation of Vpr into human immunodeficiency virus type-1 virions: requirement for the p6 region of gag and mutational analysis. J. Virol. 67, 7229–7237 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rose, P.P. & Korber, B.T. Detecting hypermutations in viral sequences with an emphasis on G→A hypermutation. Bioinformatics 16, 400–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Petersen-Mahrt, S.K. & Neuberger, M.S. In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J. Biol. Chem. 278, 19583–19586 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Chen, R. Mariani and B. Schröfelbauer for laboratory assistance. This work was funded by the US National Institutes of Health (AI058864, DA014494, AI27670, AI38858, AI43638, AI36214 and AI29164), the Universitywide AIDS Research Program of California (IS02-SI-704 and F03-SIBS-215), the Elizabeth Glaser Pediatric AIDS Foundation (EGPAF 28-PF-77491) and the Research Center for AIDS and HIV Infection of the San Diego Veterans Affairs Healthcare System. N.R.L. is an Elizabeth Glaser Scientist of the Pediatric AIDS Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel R Landau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., König, R., Pillai, S. et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11, 435–442 (2004). https://doi.org/10.1038/nsmb758

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing