Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Backbone tracking by the SF2 helicase NPH-II

Abstract

Members of the DExH/D family of proteins, a subset of helicase superfamily 2 (SF2), are involved in virtually all aspects of RNA metabolism. NPH-II, a prototypical member of this protein family, exhibits robust RNA helicase activity in vitro. Using a series of modified substrates to explore the unwinding mechanism of NPH-II, we observed that the helicase tracks exclusively on the loading strand, where it requires covalent continuity and specifically recognizes the ribose-phosphate backbone. NPH-II unwinding was unaffected by lesions and nicks on the top strand, which has a minimal role in substrate recognition. NPH-II required physical continuity of phosphodiester linkages on the loading strand, although abasic regions were tolerated. These findings suggest that SF2 helicases are mechanistically distinct from other helicase families that can tolerate breaks in the loading strand and for which bases are the primary recognition determinant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probing the role of strand continuity.
Figure 2: Effects of backbone substitutions: polyglycol modifications.
Figure 3: Effects of backbone substitutions: abasic modifications.
Figure 4: Tracking by a molecular wire stripper.

Similar content being viewed by others

References

  1. de la Cruz, J., Kressler, D. & Linder, P. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 24, 192–198 (1999).

    Article  CAS  Google Scholar 

  2. Gross, C.H. & Shuman, S. The nucleoside triphosphatase and helicase activities of vaccinia virus NPH-II are essential for virus replication. J. Virol. 72, 4729–4736 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Grassmann, C.W., Isken, O. & Behrens, S.E. Assignment of the multifunctional NS3 protein of bovine viral diarrhea virus during RNA replication: an in vivo and in vitro study. J. Virol. 73, 9196–9205 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fernandez, A. et al. The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. Nucleic Acids Res. 25, 4474–4480 (1997).

    Article  CAS  Google Scholar 

  5. Kadare, G. & Haenni, A.L. Virus-encoded RNA helicases. J. Virol. 71, 2583–2590 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Prince, P.R., Emond, M.J. & Monnat, R.J. Jr. Loss of Werner syndrome protein function promotes aberrant mitotic recombination. Genes Dev. 15, 933–938 (2001).

    Article  CAS  Google Scholar 

  7. Caruthers, J.M., Johnson, E.R. & McKay, D.B. Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl. Acad. Sci. USA 97, 13080–13085 (2000).

    Article  CAS  Google Scholar 

  8. Lorsch, J.R. & Herschlag, D. The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry 37, 2194–2206 (1998).

    Article  CAS  Google Scholar 

  9. Lorsch, J.R. & Herschlag, D. The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry 37, 2180–2193 (1998).

    Article  CAS  Google Scholar 

  10. Rogers, G.W. Jr., Komar, A.A. & Merrick, W.C. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72, 307–331 (2002).

    Article  CAS  Google Scholar 

  11. Boddeker, N., Stade, K. & Franceschi, F. Characterization of DbpA, an Escherichia coli DEAD box protein with ATP independent RNA unwinding activity. Nucleic Acids Res. 25, 537–545 (1997).

    Article  CAS  Google Scholar 

  12. Diges, C.M. & Uhlenbeck, O.C. Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. EMBO J. 20, 5503–5512 (2001).

    Article  CAS  Google Scholar 

  13. Henn, A. et al. Visualization of unwinding activity of duplex RNA by DbpA, a DEAD box helicase, at single-molecule resolution by atomic force microscopy. Proc. Natl. Acad. Sci. USA 98, 5007–5012 (2001).

    Article  CAS  Google Scholar 

  14. Nicol, S.M. & Fuller-Pace, F.V. The 'DEAD box' protein DbpA interacts specifically with the peptidyltransferase center in 23S rRNA. Proc. Natl. Acad. Sci. USA 92, 11681–11685 (1995).

    Article  CAS  Google Scholar 

  15. Schwer, B. & Guthrie, C. Prp16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature 349, 494–499 (1991).

    Article  CAS  Google Scholar 

  16. Bartenschlager, R. & Lohmann, V. Replication of hepatitis C virus. J. Gen. Virol. 81, 1631–1648 (2000).

    Article  CAS  Google Scholar 

  17. Lam, A.M., Keeney, D., Eckert, P.Q. & Frick, D.N. Hepatitis C virus NS3 ATPases/helicases from different genotypes exhibit variations in enzymatic properties. J. Virol. 77, 3950–3961 (2003).

    Article  CAS  Google Scholar 

  18. Tsu, C.A. & Uhlenbeck, O.C. Kinetic analysis of the RNA-dependent adenosinetriphosphatase activity of DbpA, an Escherichia coli DEAD protein specific for 23S ribosomal RNA. Biochemistry 37, 16989–16996 (1998).

    Article  CAS  Google Scholar 

  19. Jankowsky, E., Gross, C.H., Shuman, S. & Pyle, A.M. The DExH protein NPH-II is a processive and directional motor for unwinding RNA. Nature 403, 447–451 (2000).

    Article  CAS  Google Scholar 

  20. Pang, P.S., Jankowsky, E., Planet, P.J. & Pyle, A.M. The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J. 21, 1168–1176 (2002).

    Article  CAS  Google Scholar 

  21. Gorbalenya, A. & Koonin, E.V. Helicases: amino acid sequence comparisons. Curr. Opin. Struct. Biol. 3, 419–429 (1993).

    Article  CAS  Google Scholar 

  22. Shuman, S. Vaccinia virus RNA helicase: an essential enzyme related to the DE-H family of RNA-dependent NTPases. Proc. Natl. Acad. Sci. USA 89, 10935–10939 (1992).

    Article  CAS  Google Scholar 

  23. Gross, C.H. & Shuman, S. Vaccinia virus RNA helicase: nucleic acid specificity in duplex unwinding. J. Virol. 70, 2615–2619 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jankowsky, E., Gross, C.H., Shuman, S. & Pyle, A.M. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291, 121–125 (2001).

    Article  CAS  Google Scholar 

  25. Bianco, P.R. & Kowalczykowski, S.C. Translocation step size and mechanism of the RecBC DNA helicase. Nature 405, 368–372 (2000).

    Article  CAS  Google Scholar 

  26. Amaratunga, M. & Lohman, T.M. Escherichia coli rep helicase unwinds DNA by an active mechanism. Biochemistry 32, 6815–6820 (1993).

    Article  CAS  Google Scholar 

  27. Honig, A., Auboeuf, D., Parker, M.M., O'Malley, B.W. & Berget, S.M. Regulation of alternative splicing by the ATP-dependent DEAD-box RNA helicase p72. Mol. Cell Biol. 22, 5698–5707 (2002).

    Article  CAS  Google Scholar 

  28. Bertram, R.D., Hayes, C.J. & Soultanas, P. Vinylphosphonate internucleotide linkages inhibit the activity of PcrA DNA helicase. Biochemistry 41, 7725–7731 (2002).

    Article  CAS  Google Scholar 

  29. Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S. & Wigley, D.B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  Google Scholar 

  30. Dillingham, M.S., Soultanas, P., Wiley, P., Webb, M.R. & Wigley, D.B. Defining the roles of individual residues in the single-stranded DNA binding site of PcrA helicase. Proc. Natl. Acad. Sci. USA 98, 8381–8387 (2001).

    Article  CAS  Google Scholar 

  31. Korolev, S., Hsieh, J., Gauss, G.H., Lohman, T.M. & Waksman, G. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90, 635–647 (1997).

    Article  CAS  Google Scholar 

  32. Seybert, A., Scott, D.J., Scaife, S., Singleton, M.R. & Wigley, D.B. Biochemical characterisation of the clamp/clamp loader proteins from the euryarchaeon Archaeoglobus fulgidus. Nucleic Acids Res. 30, 4329–4338 (2002).

    Article  CAS  Google Scholar 

  33. Singleton, M.R. & Wigley, D.B. Modularity and specialization in superfamily 1 and 2 helicases. J. Bacteriol. 184, 1819–1826 (2002).

    Article  CAS  Google Scholar 

  34. Kim, J.L. et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure Fold Des. 6, 89–100 (1998).

    Article  CAS  Google Scholar 

  35. Wincott, F. et al. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 23, 2677–2684 (1995).

    Article  CAS  Google Scholar 

  36. Jankowsky, E. & Schwenzer, B. Efficient improvement of hammerhead ribozyme mediated cleavage of long substrates by oligonucleotide facilitators. Biochemistry 35, 15313–15321 (1996).

    Article  CAS  Google Scholar 

  37. Shoemaker, D.P., Garland, C.W., Steinfeld, J.I. & Nibler, J.W. Treatment of experimental data. In Experiments in Physical Chemistry Vol. 1 (eds. Provenzano, M.D. & Amerman, S.) 25–52 (McGraw Hill, New York, 1981).

    Google Scholar 

Download references

Acknowledgements

We thank Q. Yang (Case Western Reserve University) for his kind help with the experiments shown in Figure 2. We also thank the members of the Pyle lab, particularly O. Fedorova, C. Duarte, A. deLencastre and V. Serebrov, for many insightful discussions and O. Fedorova for the synthesis of oligonucleotides containing abasic clusters. We thank S. Shuman (Sloan-Kettering Institute) and C. Gross (Vertex Pharmaceuticals) for NPH-II plasmids and baculovirus constructs, protein expression protocols and many thoughtful discussions. We credit D. Wigley for the term “molecular wire stripper,” which he has used in lectures, and which we cite with his permission. We also thank S. Lomvardas (Columbia University) for help with protein expression and purification and for helpful discussions. This work was supported by a grant from the US National Institutes of Health (GMRO1 60620 to A.M.P.). A.M.P. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Marie Pyle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawaoka, J., Jankowsky, E. & Pyle, A. Backbone tracking by the SF2 helicase NPH-II. Nat Struct Mol Biol 11, 526–530 (2004). https://doi.org/10.1038/nsmb771

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing