Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intron-encoded homing endonuclease I-TevI also functions as a transcriptional autorepressor

Abstract

Customary binding sites of intron-encoded homing endonucleases lie within cognate intronless alleles, at the so-called homing sites. Here, we describe a novel, high-affinity binding site for I-TevI endonuclease, encoded within the group I td intron of phage T4. This site is an operator that overlaps the T4 late promoter, which drives I-TevI expression from within the td intron. I-TevI binds the operator and homing sites with equal affinity, and functions as a transcriptional autorepressor. Distinct sequence and spacing requirements of the catalytic domain result in reduced cleavage activity on operator DNA. Crystallographic studies showed that the overall interactions of the DNA-binding domain with the operator and homing sites are similar, but have some different hydrogen-bonding contacts. We present a model in which the flexibility in protein-DNA interactions allows I-TevI to bind variant intronless alleles to promote intron mobility while facilitating its function in autorepression, and thereby persistence in its host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulatory sites for intron endonucleases in T-even phages.
Figure 2: I-TevI 130C binds with equal affinity to the homing and to the operator sites.
Figure 3: Interactions of I-TevI with the operator site.
Figure 4: I-TevI cleavage efficiency is reduced on operator substrate.
Figure 5: In vivo activity of the I-TevI promoter in the presence and absence of I-TevI.
Figure 6: Cocrystal structure of I-TevI 130C on operator or homing site DNA.
Figure 7: Comparison of alternative minor groove hydrogen-bonding contacts.
Figure 8: Distinct functional domains allow I-TevI to act as an endonuclease and a repressor.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Belfort, M., Reaban, M.E., Coetzee, T. & Dalgaard, J.Z. Prokaryotic introns and inteins: a panoply of form and function. J. Bacteriol. 177, 3897–3903 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gogarten, J.P., Senejani, A.G., Zhaxybayeva, O., Olendzenski, L. & Hilario, E. Inteins: structure, function, and evolution. Annu. Rev. Microbiol. 56, 263–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Belfort, M., Derbyshire, V., Cousineau, B. & Lambowitz, A. Mobile introns: pathways and proteins. In Mobile DNA II (eds. Craig, N., Craigie, R., Gellert, M. & Lambowitz, A.) 761–783 (ASM Press, Washington DC, 2002).

    Chapter  Google Scholar 

  4. Dujon, B. et al. Mobile introns: definition of terms and recommended nomenclature. Gene 82, 115–118 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Mueller, J.E., Clyman, J., Huang, Y.-J., Parker, M.M. & Belfort, M. Intron mobility in phage T4 occurs in the context of recombination-dependent DNA replication by way of multiple pathways. Genes Dev. 10, 351–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Belfort, M. Bacteriophage introns: parasites within parasites? Trends Genet. 5, 209–213 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Galburt, E.A. & Stoddard, B.L. Catalytic mechanisms of restriction and homing endonucleases. Biochemistry 41, 13851–13860 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Jurica, M.S. & Stoddard, B.L. Homing endonucleases: structure, function and evolution. Cell. Mol. Life Sci. 55, 1304–1326 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Bryk, M. et al. The td intron endonuclease makes extensive sequence tolerant contacts across the minor groove of its DNA target. EMBO J. 12, 2141–2149 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bryk, M., Belisle, M., Mueller, J.E. & Belfort, M. Selection of a remote cleavage site by I-TevI, the td intron-encoded endonuclease. J. Mol. Biol. 247, 197–210 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Chevalier, B.S. & Stoddard, B.L. Homing endonucleases: structural and functional insight into the catalysis of intron/intein mobility. Nucleic Acids Res. 29, 3757–3774 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bechhofer, D.H., Hue, K.K. & Shub, D.A. An intron in the thymidylate synthase gene of Bacillus bacteriophage β22: Evidence for independent evolution of a gene, its group I intron, and the intron open reading frame. Proc. Natl. Acad. Sci. USA 91, 11669–11673 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Edgell, D.R. & Shub, D.A. Related homing endonucleases I-BmoI and I-TevI use different strategies to cleave homologous recognition sites. Proc. Natl. Acad. Sci. USA 98, 7898–7903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chu, F.K., Maley, G.F., Maley, F. & Belfort, M. Intervening sequence in the thymidylate synthase gene of bacteriophage T4. Proc. Natl. Acad. Sci. USA 81, 3049–3053 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gott, J.M., Shub, D.A. & Belfort, M. Multiple self-splicing introns in bacteriophage T4: Evidence from autocatalytic GTP labeling of RNA in vitro. Cell 47, 81–87 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Young, P., Ohman, M., Xu, M.Q., Shub, D.A. & Sjoberg, B.-M. Intron-containing T4 bacteriophage gene sunY encodes an anaerobic ribonucleotide reductase. J. Biol. Chem. 269, 20229–20232 (1994).

    CAS  PubMed  Google Scholar 

  17. Quirk, S.M., Bell-Pedersen, D. & Belfort, M. Intron mobility in the T-even phages: high frequency inheritance of group I introns promoted by intron open reading frames. Cell 56, 455–465 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Eddy, S.R. & Gold, L. The phage T4 nrdB intron: a deletion mutant of a version found in the wild. Genes Dev. 5, 1032–1041 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Gott, J.M. et al. Genes within genes: Independent expression of phage T4 intron open reading frames and the genes in which they reside. Genes Dev. 2, 1791–1799 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Semrad, K. & Schroeder, R. A ribosomal function is necessary for efficient splicing of the T4 phage thymidylate synthase intron in vivo. Genes Dev. 12, 1327–1337 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Roey, P., Waddling, C.A., Fox, K.M., Belfort, M. & Derbyshire, V. Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate. EMBO J. 20, 3631–3637 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Loizos, N., Silva, G.H. & Belfort, M. The intron-encoded endonuclease I-TevII binds across the minor groove and induces two distinct conformational changes in its DNA substrate. J. Mol. Biol. 255, 412–424 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Derbyshire, V., Kowalski, J.C., Dansereau, J.T., Hauer, C.R. & Belfort, M. Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site. J. Mol. Biol. 265, 494–506 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Dean, A.B. et al. Zinc finger as distance determinant in the flexible linker of intron endonuclease I-TevI. Proc. Natl. Acad. Sci. USA 99, 8554–8561 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeffery, C.J. Moonlighting proteins: old proteins learning new tricks. Trends Genet. 19, 415–417 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Belfort, M. Two for the price of one: a bifunctional intron-encoded DNA endonuclease-RNA maturase. Genes Dev. 17, 2860–2863 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Bolduc, J.M. et al. Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor. Genes Dev. 17, 2875–2888 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miyake, T., Hiraishi, H., Sammoto, H. & Ono, B.-I. Involvement of the VDE homing endonuclease and rapamycin in regulation of the Saccharomyces cerevisiae GSH11 gene encoding the high affinity glutathione transporter. J. Biol. Chem. 278, 39632–39636 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Loizos, N., Tillier, E.R.M. & Belfort, M. Evolution of mobile group I introns: Recognition of intron sequences by an intron-encoded endonuclease. Proc. Natl. Acad. Sci. USA 91, 11983–11987 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. George, J.W., Stohr, B.A., Tomso, D.J. & Kreuzer, K.N. The tight linkage between DNA replication and double-strand break repair in bacteriophage T4. Proc. Natl. Acad. Sci. USA 98, 8290–8297 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Belle, A., Landthaler, M. & Shub, D.A. Intronless homing: site-specific endonuclease SegF of bacteriophage T4 mediates localized marker exclusion analogous to homing endonucleases of group I introns. Genes Dev. 16, 351–362 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Edgell, D.R. Selfish DNA: new abode for homing endonucleases. Curr. Biol. 12, R276–R278 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Miller, E.S. et al. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67, 86–156 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Roey, P., Meehan, L., Kowalski, J., Belfort, M. & Derbyshire, V. Catalytic domain structure and hypothesis for function of GIY-YIG intron endonuclease I-TevI. Nat. Struct. Biol. 9, 806–811 (2002).

    CAS  PubMed  Google Scholar 

  35. Bell-Pedersen, D., Quirk, S.M., Bryk, M. & Belfort, M. I-TevI, the endonuclease encoded by the mobile td intron, recognizes binding and cleavage domains on its DNA target. Proc. Natl. Acad. Sci. USA 88, 7719–7723 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jurica, M.S., Monnat, R.J. Jr. & Stoddard, B.L. DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI. Mol. Cell 2, 469–476 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Chevalier, B., Turmel, M., Lemieux, C., Monnat, R.J.J. & Stoddard, B.L. Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI. J. Mol. Biol. 329, 253–269 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Flick, K.E., Jurica, M.S., Monnat, R.J. Jr. & Stoddard, B.L. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature 394, 96–101 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Lehman, I.R. & Pratt, E.A. On the structure of the glucosylated hydroxymethylcytosine nucleotides of coliphages T2, T4, and T6. J. Biol. Chem. 235, 3254–3259 (1960).

    CAS  PubMed  Google Scholar 

  40. Newman, M., Strzelecka, T., Dorner, L.F., Schildkraut, I. & Aggarwal, A.K. Structure of BamHI endonuclease bound to DNA: partial folding and unfolding on DNA binding. Science 269, 656–663 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Viadiu, H. & Aggarwal, A.K. Structure of BamHI bound to nonspecific DNA: a model for DNA sliding. Mol. Cell 5, 889–895 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Belfort, M., Chandry, P.S. & Pedersen-Lane, J. Genetic delineation of functional components of the group I intron in the phage T4 td gene. Cold Spring Harb. Symp. Quant. Biol. 52, 181–192 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Depew, R.E., Snopek, T.J. & Cozzarelli, N.R. Characterization of a new class of deletions of the D region of the bacteriophage T4 genome. Virology 64, 144–145 (1975).

    Article  CAS  PubMed  Google Scholar 

  44. Shub, D.A. & Casna, N.J. Bacteriophage T4, a new vector for the expression of cloned genes. Gene 37, 31–36 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. Heyduk, T. & Lee, J.C. Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction. Proc. Natl. Acad. Sci. USA 87, 1744–1748 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Edgell, D.R., Stanger, M.J. & Belfort, M. Importance of a single base pair for discrimination between intron-containing and intronless alleles by endonuclease I-BmoI. Curr. Biol. 13, 973–978 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  49. Laskowski, R.A., McArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 282–291 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Conlan, J. Dansereau, and J. Pata for their thoughtful comments on the manuscript, J. Dansereau for figure refinements and M. Carl for expert manuscript preparation. This work was supported by US National Institutes of Health (NIH) grants GM39422 and GM44844 to M.B., GM56966 to P.V.R. and GM37746 to D.A.S. D.R.E. was supported by a postdoctoral fellowship from the Canadian Institute of Health Research. S.L. was supported in part by a stipend from the Center for Molecular Genetics, University at Albany. The X-ray diffraction facilities at beamline X12C of the National Synchrotron Light Source were supported by the US Department of Energy and by grants from the NIH. Oligonucleotides were provided by the Molecular Genetics Core Facility of Wadsworth Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Belfort.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edgell, D., Derbyshire, V., Roey, P. et al. Intron-encoded homing endonuclease I-TevI also functions as a transcriptional autorepressor. Nat Struct Mol Biol 11, 936–944 (2004). https://doi.org/10.1038/nsmb823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing