Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes

Abstract

The translational recoding of UGA as selenocysteine (Sec) is directed by a SECIS element in the 3′ untranslated region (UTR) of eukaryotic selenoprotein mRNAs. The selenocysteine insertion sequence (SECIS) contains two essential tandem sheared G·A pairs that bind SECIS-binding protein 2 (SBP2), which recruits a selenocysteine-specific elongation factor and Sec-tRNASec to the ribosome. Here we show that ribosomal protein L30 is a component of the eukaryotic selenocysteine recoding machinery. L30 binds SECIS elements in vitro and in vivo, stimulates UGA recoding in transfected cells and competes with SBP2 for SECIS binding. Magnesium, known to induce a kink-turn in RNAs that contain two tandem G·A pairs, decreases the SBP2–SECIS complex in favor of the L30-SECIS interaction. We propose a model in which SBP2 and L30 carry out different functions in the UGA recoding mechanism, with the SECIS acting as a molecular switch upon protein binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the 14.5-kDa SECIS-binding protein.
Figure 2: Purification and analysis of L30.
Figure 3: Interaction of L30 with selenoprotein mRNAs in vivo.
Figure 4: Effect of L30 overexpression on UGA-selenocysteine recoding activity.
Figure 5: SECIS-binding activities of L30 and SBP2 in vitro.
Figure 6: Displacement of preformed L30–SECIS and SBP2–SECIS complexes.
Figure 7: Models for UGA recoding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Driscoll, D.M. & Copeland, P.R. Mechanism and regulation of selenoprotein synthesis. Annu. Rev. Nutr. 23, 17–40 (2003).

    Article  CAS  Google Scholar 

  2. Hatfield, D.L. & Gladyshev, V.N. How selenium has altered our understanding of the genetic code. Mol. Cell. Biol. 22, 3565–3576 (2002).

    Article  CAS  Google Scholar 

  3. Huttenhofer, A., Westhof, E. & Bock, A. Solution structure of mRNA hairpins promoting selenocysteine incorporation in Escherichia coli and their base-specific interaction with special elongation factor SELB. RNA 2, 354–366 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zinoni, F., Heider, J. & Bock, A. Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc. Natl. Acad. Sci. USA 87, 4660–4664 (1990).

    Article  CAS  Google Scholar 

  5. Kromayer, M., Wilting, R., Tormay, P. & Bock, A. Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB. J. Mol. Biol. 262, 413–420 (1996).

    Article  CAS  Google Scholar 

  6. Suppmann, S., Persson, B.C. & Bock, A. Dynamics and efficiency in vivo of UGA-directed selenocysteine insertion at the ribosome. EMBO J. 18, 2284–2293 (1999).

    Article  CAS  Google Scholar 

  7. Huttenhofer, A. & Bock, A. Selenocysteine inserting RNA elements modulate GTP hydrolysis of elongation factor SelB. Biochemistry 37, 885–890 (1998).

    Article  CAS  Google Scholar 

  8. Berry, M.J. et al. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353, 273–276 (1991).

    Article  CAS  Google Scholar 

  9. Martin, G.W. & Berry, M.J. SECIS elements. in Selenium: Its Molecular Biology and Role in Human Health (ed. Hatfield, D.L.) 45–54 (Kluwer Academic, Amsterdam, 2001).

    Chapter  Google Scholar 

  10. Fagegaltier, D. et al. Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J. 19, 4796–4805 (2000).

    Article  CAS  Google Scholar 

  11. Tujebajeva, R.M. et al. Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep. 1, 158–163 (2000).

    Article  CAS  Google Scholar 

  12. Copeland, P.R., Fletcher, J.E., Carlson, B.A., Hatfield, D.L. & Driscoll, D.M. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 19, 306–314 (2000).

    Article  CAS  Google Scholar 

  13. Zavacki, A.M. et al. Coupled tRNA(Sec)-dependent assembly of the selenocysteine decoding apparatus. Mol. Cell 11, 773–781 (2003).

    Article  CAS  Google Scholar 

  14. Fletcher, J.E., Copeland, P.R. & Driscoll, D.M. Polysome distribution of phospholipid hydroperoxide glutathione peroxidase mRNA: evidence for a block in elongation at the UGA/selenocysteine codon. RNA 6, 1573–1584 (2000).

    Article  CAS  Google Scholar 

  15. Martin, G.W. & Berry, M.J. Selenocysteine codons decrease polysome association on endogenous selenoprotein mRNAs. Genes Cells 6, 121–129 (2001).

    Article  CAS  Google Scholar 

  16. Fagegaltier, D., Lescure, A., Walczak, R., Carbon, P. & Krol, A. Structural analysis of new local features in SECIS RNA hairpins. Nucleic Acids Res. 28, 2679–2689 (2000).

    Article  CAS  Google Scholar 

  17. Grundner-Culemann, E., Martin, G.W., Harney, J.W. & Berry, M.J. Two distinct SECIS structures capable of directing selenocysteine incorporation in eukaryotes. RNA 5, 625–635 (1999).

    Article  CAS  Google Scholar 

  18. Fletcher, J.E., Copeland, P.R., Driscoll, D.M. & Krol, A. The selenocysteine incorporation machinery: interactions between the SECIS RNA and the SECIS-binding protein SBP2. RNA 7, 1442–1453 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Copeland, P.R. & Driscoll, D.M. Purification, redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis. J. Biol. Chem. 274, 25447–25454 (1999).

    Article  CAS  Google Scholar 

  20. Lesoon, A., Mehta, A., Singh, R., Chisolm, G.M. & Driscoll, D.M. An RNA-binding protein recognizes a mammalian selenocysteine insertion sequence element required for cotranslational incorporation of selenocysteine. Mol. Cell. Biol. 17, 1977–1985 (1997).

    Article  CAS  Google Scholar 

  21. Moore, T., Zhang, Y., Fenley, M.O. & Li, H. Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure (Camb.) 12, 807–818 (2004).

    Article  CAS  Google Scholar 

  22. Hamma, T. & Ferre-D'Amare, A.R. Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA at 1.8 Å resolution. Structure (Camb.) 12, 893–903 (2004).

    Article  CAS  Google Scholar 

  23. Vidovic, I., Nottrott, S., Hartmuth, K., Luhrmann, R. & Ficner, R. Crystal structure of the spliceosomal 15.5 kD protein bound to a U4 snRNA fragment. Mol. Cell 6, 1331–1342 (2000).

    Article  CAS  Google Scholar 

  24. Mao, H., White, S.A. & Williamson, J.R. A novel loop-loop recognition motif in the yeast ribosomal protein L30 autoregulatory RNA complex. Nat. Struct. Biol. 6, 1139–1147 (1999).

    Article  CAS  Google Scholar 

  25. Frankel, A.D. If the loop fits. Nat. Struct. Biol. 6, 1081–1083 (1999).

    Article  CAS  Google Scholar 

  26. Mehta, A., Rebsch, C.M., Kinzy, S.A., Fletcher, J.E. & Copeland, P.R. Efficiency of mammalian selenocysteine incorporation. J. Biol. Chem. 279, 37852–37859 (2004).

    Article  CAS  Google Scholar 

  27. Charron, C. et al. The archaeal sRNA binding protein L7Ae has a 3D structure very similar to that of its eukaryal counterpart while having a broader RNA-binding specificity. J. Mol. Biol. 342, 757–773 (2004).

    Article  CAS  Google Scholar 

  28. Low, S.C., Grundner-Culemann, E., Harney, J.W. & Berry, M.J. SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy. EMBO J. 19, 6882–6890 (2000).

    Article  CAS  Google Scholar 

  29. Copeland, P.R., Stepanik, V.A. & Driscoll, D.M. Insight into mammalian selenocysteine insertion: domain structure and ribosome binding properties of Sec insertion sequence binding protein 2. Mol. Cell. Biol. 21, 1491–1498 (2001).

    Article  CAS  Google Scholar 

  30. Goody, T.A., Melcher, S.E., Norman, D.G. & Lilley, D.M. The kink-turn motif in RNA is dimorphic, and metal ion-dependent. RNA 10, 254–264 (2004).

    Article  CAS  Google Scholar 

  31. Matsumura, S., Ikawa, Y. & Inoue, T. Biochemical characterization of the kink-turn RNA motif. Nucleic Acids Res. 31, 5544–5551 (2003).

    Article  CAS  Google Scholar 

  32. Walczak, R., Westhof, E., Carbon, P. & Krol, A. A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA 2, 367–379 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dabeva, M.D. & Warner, J.R. The yeast ribosomal protein L32 and its gene. J. Biol. Chem. 262, 16055–16059 (1987).

    CAS  PubMed  Google Scholar 

  34. Vilardell, J., Yu, S.J. & Warner, J.R. Multiple functions of an evolutionarily conserved RNA binding domain. Mol. Cell 5, 761–766 (2000).

    Article  CAS  Google Scholar 

  35. Spahn, C.M. et al. Structure of the 80S ribosome from Saccharomyces cerevisiae: tRNA-ribosome and subunit-subunit interactions. Cell 107, 373–386 (2001).

    Article  CAS  Google Scholar 

  36. Vilardell, J. & Warner, J.R. Ribosomal protein L32 of Saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rRNA. Mol. Cell. Biol. 17, 1959–1965 (1997).

    Article  CAS  Google Scholar 

  37. Li, B., Vilardell, J. & Warner, J.R. An RNA structure involved in feedback regulation of splicing and of translation is critical for biological fitness. Proc. Natl. Acad. Sci. USA 93, 1596–1600 (1996).

    Article  CAS  Google Scholar 

  38. Dabeva, M.D. & Warner, J.R. Ribosomal protein L32 of Saccharomyces cerevisiae regulates both splicing and translation of its own transcript. J. Biol. Chem. 268, 19669–19674 (1993).

    CAS  PubMed  Google Scholar 

  39. Chao, J.A., Prasad, G.S., White, S.A., Stout, C.D. & Williamson, J.R. Inherent protein structural flexibility at the RNA-binding interface of L30e. J. Mol. Biol. 326, 999–1004 (2003).

    Article  CAS  Google Scholar 

  40. Kinter, M.T. & Sherman, N.E. Protein Sequencing and Identification Using Tandem Mass Spectrometry (Wiley-Interscience, New York, 2000).

    Book  Google Scholar 

  41. Tran, E.J., Zhang, X. & Maxwell, E.S. Efficient RNA 2'-O-methylation requires juxtaposed and symmetrically assembled archaeal box C/D and C'/D' RNPs. EMBO J. 22, 3930–3940 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Willard and M. Kinter of the Mass Spectrometry Facilities of the Cleveland Clinic Foundation for performing the mass spectrometry experiments. The liquid chromatography–mass spectrometry instrument used in this study was purchased with funding from the US National Institutes of Health (RR16794) and the State of Ohio Hayes Investment Trust Fund. We also thank C. Gerber for the preparation of rat tissue extracts, P. Copeland for providing the luciferase reporter constructs, W. Merrick for providing ribosomes from rabbit reticulocyte lysate, J. Suryadi (Wake Forest University) for expressing and purifying the M. jannaschii L7Ae protein, and C. Gerber and L. Middleton for reading the manuscript. This work was supported by Public Health Service grant HL29582 (D.M.D.), American Cancer Society grant IRG 95-035-09 (B.A.B.), and the Wake Forest University Science Research Fund (B.A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna M Driscoll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Size fractionation on a Sephacryl S400 column. (PDF 1724 kb)

Supplementary Fig. 2

Determination of apparent Kd values of L30, SBP2 and L7Ae for the SECIS. (PDF 212 kb)

Supplementary Fig. 3

Characterization of SECIS–protein complexes by supershift analyses. (PDF 217 kb)

Supplementary Methods

Cloning and expression of recombinant proteins. (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavatte, L., Brown, B. & Driscoll, D. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat Struct Mol Biol 12, 408–416 (2005). https://doi.org/10.1038/nsmb922

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb922

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing