Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1

Abstract

Eukaryotic cells coordinately regulate histone and DNA synthesis. In mammalian cells, most of the regulation of histone synthesis occurs post-transcriptionally by regulating the concentrations of histone mRNA. As cells enter S phase, histone mRNA levels increase, and at the end of S phase they are rapidly degraded. Moreover, inhibition of DNA synthesis causes rapid degradation of histone mRNAs. Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated. Instead, they end with a conserved stem-loop structure, which is the only cis-acting element required for coupling regulation of histone mRNA half-life with DNA synthesis. Here we show that regulated degradation of histone mRNAs requires Upf1, a key regulator of the nonsense-mediated decay pathway, and ATR, a key regulator of the DNA damage checkpoint pathway activated during replication stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: siRNA-mediated downregulation of Upf1 but not Upf2 resulted in less efficient histone mRNA degradation.
Figure 2: Stable expression of dominant negative Upf1 proteins prevents efficient histone mRNA degradation after inhibition of DNA synthesis.
Figure 3: Transient overexpression of dominant negative Upf1 mutants prevents efficient histone mRNA degradation.
Figure 4: Expression of K498A mutant of Upf1 results in a delay of histone mRNA degradation as cells exited the S phase.
Figure 5: Upf1 interacts with the histone mRNP.
Figure 6: Treatment of cells with caffeine (CA) before hydroxyurea (HU) results in a decreased rate of histone mRNA degradation.
Figure 7: The kinase activity of ATR is required for efficient degradation of histone mRNAs.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Nelson, D.M. et al. Coupling of DNA synthesis and histone synthesis in S-phase independent of cyclin/cdk2 activity. Mol. Cell. Biol. 22, 7459–7472 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ye, X. et al. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol. Cell 11, 341–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Sittman, D.B., Graves, R.A. & Marzluff, W.F. Histone mRNA concentrations are regulated at the level of transcription and mRNA degradation. Proc. Natl. Acad. Sci. USA 80, 1849–1853 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dominski, Z. & Marzluff, W.F. Formation of the 3′ end of histone mRNA. Gene 239, 1–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Dominski, Z., Zheng, L.-X., Sanchez, R. & Marzluff, W.F. The stem-loop binding protein facilitates 3′ end formation by stabilizing U7 snRNP binding to the histone pre-mRNA. Mol. Cell. Biol. 19, 3561–3570 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanchez, R. & Marzluff, W.F. The stem-loop binding protein is required for efficient translation of histone mRNA in vivo and in vitro. Mol. Cell. Biol. 22, 7093–7104 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pandey, N.B. & Marzluff, W.F. The stem-loop structure at the 3′ end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol. Cell. Biol. 7, 4557–4559 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harris, M.E. et al. Regulation of histone mRNA in the unperturbed cell cycle: evidence suggesting control at two posttranscriptional steps. Mol. Cell. Biol. 11, 2416–2424 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, V.N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Graves, R.A., Pandey, N.B., Chodchoy, N. & Marzluff, W.F. Translation is required for regulation of histone mRNA degradation. Cell 48, 615–626 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Kaygun, H. & Marzluff, W.F. Translation termination is involved in histone mRNA degradation when DNA replication is inhibited. Mol. Cell. Biol. 25, 6879–6888 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wells, D. & Kedes, L. Structure of a human histone cDNA: evidence that basally expressed histone genes have intervening sequences and encode polyadenylated mRNAs. Proc. Natl. Acad. Sci. USA 82, 2834–2838 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brush, D., Dodgson, J.B., Choi, O.R., Stevens, P.W. & Engel, J.D. Replacement variant histone genes contain intervening sequences. Mol. Cell. Biol. 5, 1307–1317 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Czaplinski, K., Weng, Y., Hagan, K.W. & Peltz, S.W. Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. RNA 1, 610–623 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun, X., Perlick, H.A., Dietz, H.C. & Maquat, L.E. A mutated human homologue to yeast Upf1 protein has a dominant-negative effect on the decay of nonsense-containing mRNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 95, 10009–10014 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leeds, P., Wood, J.M., Lee, B.-S. & Culbertson, M.R. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 2165–2177 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perlick, H.A., Medghalchi, S.M., Spencer, F.A., Kendzior, R.J., Jr. & Dietz, H.C. Mammalian orthologues of a yeast regulator of nonsense transcript stability. Proc. Natl. Acad. Sci. USA 93, 10928–10932 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weng, Y., Czaplinski, K. & Peltz, S.W. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol. Cell. Biol. 16, 5477–5490 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Whitfield, M.L. et al. Stem-loop binding protein, the protein that binds the 3′ end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. Mol. Cell. Biol. 20, 4188–4198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng, L. et al. Phosphorylation of SLBP on two threonines triggers degradation of SLBP, the sole cell-cycle regulated factor required for regulation of histone mRNA processing, at the end of S-phase. Mol. Cell. Biol. 23, 1590–1601 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Whitfield, M.L. et al. SLBP is associated with histone mRNA on polyribosomes as a component of histone mRNP. Nucleic Acids Res. 32, 4833–4842 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He, F. & Jacobson, A. Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Genes Dev. 9, 437–454 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Schell, T. et al. Complexes between the nonsense-mediated mRNA decay pathway factor human upf1 (up-frameshift protein 1) and essential nonsense-mediated mRNA decay factors in HeLa cells. Biochem. J. 373, 775–783 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nghiem, P., Park, P.K., Kim, Y., Vaziri, C. & Schreiber, S.L. ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc. Natl. Acad. Sci. USA 98, 9092–9097 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amrani, N. et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Maquat, L.E. & Li, X.J. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. RNA 7, 445–456 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Le Hir, H., Moore, M.J. & Maquat, L.E. Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev. 14, 1098–1108 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ishigaki, Y., Li, X.J., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Marzluff, W.F., Gongidi, P., Woods, K.R., Jin, J.P. & Maltais, L. The human and mouse replication-dependent histone genes. Genomics 80, 487–498 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y. & Ohno, S. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev. 15, 2215–2228 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ohnishi, T. et al. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell 12, 1187–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Pal, M., Ishigaki, Y., Nagy, E. & Maquat, L.E. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA 7, 5–15 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lejeune, F., Li, X. & Maquat, L.E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell 12, 675–687 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Brumbaugh, K.M. et al. The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol. Cell 14, 585–598 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Nabatiyan, A. & Krude, T. Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis. Mol. Cell. Biol. 24, 2853–2862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, Y.K., Furic, L., LesGroseillers, L. & Maquat, L.E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Wellman, S.E., Casano, P.J., Pilch, D.R., Marzluff, W.F. & Sittman, D.B. Characterization of mouse H3.3-like histone genes. Gene 59, 29–39 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Wagner, E.J. & Garcia-Blanco, M.A. RNAi-mediated PTB depletion leads to enhanced exon definition. Mol. Cell 10, 943–949 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Mendell, J.T., ap Rhys, C.M. & Dietz, H.C. Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 298, 419–422 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant GM29832 to W.F.M. We thank E. Wagner and B. Duronio for critical reading of the manuscript. We thank L. Maquat (University of Rochester) for Upf1 clone, M. Hentze (EMBL) and C. Smith (Cambridge University) for Upf1 antibodies, J. Lykke-Andersen (University of Colorado) for Upf2 antibody, M. Garcia-Blanco (Duke University) for PTB antibody and P. Nghiem (Harvard) for ATR cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F Marzluff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaygun, H., Marzluff, W. Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1. Nat Struct Mol Biol 12, 794–800 (2005). https://doi.org/10.1038/nsmb972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing