Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tyrosine phosphorylation of cofilin at Y68 by v-Src leads to its degradation through ubiquitin–proteasome pathway

Abstract

Cofilin is a major regulator of actin dynamics involved in the regulation of cell spreading and migration through its actin depolymerizing and severing activities. v-Src is an activated Src tyrosine kinase and a potent oncogene known to phosphorylate a variety of cellular proteins in cell transformation process including altered cell adhesion, spreading and migration. Recently, it has been suggested that cofilin is a potential substrate of v-Src (Rush et al., 2005). Here, we show direct tyrosine phosphorylation of cofilin by v-Src and identify Y68 as the major phosphorylation site. Cofilin phosphorylation at Y68 did not change its activity per se, but induced increased ubiquitination of cofilin and its degradation through the proteosome pathway. Furthermore, the negative effect of cofilin on cellular F-actin contents was inhibited by coexpression of v-Src, whereas that of cofilin mutant Y68F (Y68 mutated to F) was not affected, suggesting that v-Src-mediated cofilin phosphorylation at Y68 is required for the degradation of cofilin in vivo. Lastly, inhibition of cell spreading by v-Src was rescued partially by coexpression of cofilin, and to a greater extent by the Y68F mutant, which is not subjected to v-Src-induced degradation through phosphorylation, suggesting that v-Src-mediated changes in cell spreading is, at least in part, through inhibiting the function of cofilin through phosphorylating it at Y68. Together, these results suggest a novel mechanism by which cofilin is regulated by v-Src through tyrosine phosphorylation at Y68 that triggers the degradation of cofilin through ubiquitination–proteosome pathway and consequently inhibits cofilin activity in reducing cellular F-actin contents and cell spreading.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abbi S, Ueda H, Zheng C, Cooper LA, Zhao J, Christopher R et al. (2002). Regulation of focal adhesion kinase by a novel protein inhibitor FIP200. Mol Biol Cell 13: 3178–3191.

    Article  CAS  Google Scholar 

  • Agnew BJ, Minamide LS, Bamburg JR . (1995). Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J Biol Chem 270: 17582–17587.

    Article  CAS  Google Scholar 

  • Bailly M, Jones GE . (2003). Polarised migration: cofilin holds the front. Curr Biol 13: R128–R130.

    Article  CAS  Google Scholar 

  • Bamburg JR . (1999). Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15: 185–230.

    Article  CAS  Google Scholar 

  • Bamburg JR, McGough A, Ono S . (1999). Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 9: 364–370.

    Article  CAS  Google Scholar 

  • Bamburg JR, Wiggan OP . (2002). ADF/cofilin and actin dynamics in disease. Trends Cell Biol 12: 598–605.

    Article  CAS  Google Scholar 

  • Bao J, Gur G, Yarden Y . (2003). Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc Natl Acad Sci USA 100: 2438–2443.

    Article  CAS  Google Scholar 

  • Bianchi F, Magnifico A, Olgiati C, Zanesi N, Pekarsky Y, Tagliabue E et al. (2006). FHIT-proteasome degradation caused by mitogenic stimulation of the EGF receptor family in cancer cells. Proc Natl Acad Sci USA 103: 18981–18986.

    Article  CAS  Google Scholar 

  • Bjorge JD, Jakymiw A, Fujita DJ . (2000). Selected glimpses into the activation and function of Src kinase. Oncogene 19: 5620–5635.

    Article  CAS  Google Scholar 

  • Boschek CB, Jockusch BM, Friis RR, Back R, Grundmann E, Bauer H . (1981). Early changes in the distribution and organization of microfilament proteins during cell transformation. Cell 24: 175–184.

    Article  CAS  Google Scholar 

  • Brown MC, Turner CE . (2004). Paxillin: adapting to change. Physiol Rev 84: 1315–1339.

    Article  CAS  Google Scholar 

  • Brown MT, Cooper JA . (1996). Regulation, substrates and functions of src. Biochim Biophys Acta 1287: 121–149.

    PubMed  Google Scholar 

  • Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX et al. (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136: 1307–1322.

    Article  CAS  Google Scholar 

  • Carlier MF, Ressad F, Pantaloni D . (1999). Control of actin dynamics in cell motility. Role of ADF/cofilin. J Biol Chem 274: 33827–33830.

    Article  CAS  Google Scholar 

  • Caswell PT, Norman JC . (2006). Integrin trafficking and the control of cell migration. Traffic 7: 14–21.

    Article  CAS  Google Scholar 

  • Chaar Z, O'Reilly P, Gelman I, Sabourin LA . (2006). v-Src-dependent down-regulation of the Ste20-like kinase SLK by casein kinase II. J Biol Chem 281: 28193–28199.

    Article  CAS  Google Scholar 

  • Chen HC, Appeddu PA, Isoda H, Guan JL . (1996). Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 271: 26329–26334.

    Article  CAS  Google Scholar 

  • Christopher RA, Guan JL . (2000). To move or not: how a cell responds (Review). Int J Mol Med 5: 575–581.

    CAS  PubMed  Google Scholar 

  • Condeelis J . (2001). How is actin polymerization nucleated in vivo? Trends Cell Biol 11: 288–293.

    Article  CAS  Google Scholar 

  • Cooper LA, Shen TL, Guan JL . (2003). Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Mol Cell Biol 23: 8030–8041.

    Article  CAS  Google Scholar 

  • Dawe HR, Minamide LS, Bamburg JR, Cramer LP . (2003). ADF/cofilin controls cell polarity during fibroblast migration. Curr Biol 13: 252–257.

    Article  CAS  Google Scholar 

  • Defilippi P, Di Stefano P, Cabodi S . (2006). p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol 16: 257–263.

    Article  CAS  Google Scholar 

  • Frame MC . (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602: 114–130.

    CAS  Google Scholar 

  • Gan B, Melkoumian ZK, Wu X, Guan KL, Guan JL . (2005). Identification of FIP200 interaction with the TSC1-TSC2 complex and its role in regulation of cell size control. J Cell Biol 170: 379–389.

    Article  CAS  Google Scholar 

  • Gungabissoon RA, Bamburg JR . (2003). Regulation of growth cone actin dynamics by ADF/cofilin. J Histochem Cytochem 51: 411–420.

    Article  CAS  Google Scholar 

  • Huang C, Ni Y, Wang T, Gao Y, Haudenschild CC, Zhan X . (1997). Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J Biol Chem 272: 13911–13915.

    Article  CAS  Google Scholar 

  • Huang TY, DerMardirossian C, Bokoch GM . (2006). Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol 18: 26–31.

    Article  CAS  Google Scholar 

  • Hunter T . (2007). The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28: 730–738.

    Article  CAS  Google Scholar 

  • Ichetovkin I, Grant W, Condeelis J . (2002). Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr Biol 12: 79–84.

    Article  CAS  Google Scholar 

  • Kellie S, Patel B, Wigglesworth NM, Critchley DR, Wyke JA . (1986). The use of Rous sarcoma virus transformation mutants with differing tyrosine kinase activities to study the relationships between vinculin phosphorylation, pp60v-src location and adhesion plaque integrity. Exp Cell Res 165: 216–228.

    Article  CAS  Google Scholar 

  • LaLonde DP, Brown MC, Bouverat BP, Turner CE . (2005). Actopaxin interacts with TESK1 to regulate cell spreading on fibronectin. J Biol Chem 280: 21680–21688.

    Article  CAS  Google Scholar 

  • Lauffenburger DA, Horwitz AF . (1996). Cell migration: a physically integrated molecular process. Cell 84: 359–369.

    Article  CAS  Google Scholar 

  • Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I et al. (1999). Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4: 1029–1040.

    Article  CAS  Google Scholar 

  • Lin R, Martyn KD, Guyette CV, Lau AF, Warn-Cramer BJ . (2006). v-Src tyrosine phosphorylation of connexin43: regulation of gap junction communication and effects on cell transformation. Cell Commun Adhes 13: 199–216.

    Article  CAS  Google Scholar 

  • Martinez-Moczygemba M, Huston DP, Lei JT . (2007). JAK kinases control IL-5 receptor ubiquitination, degradation, and internalization. J Leukoc Biol 81: 1137–1148.

    Article  CAS  Google Scholar 

  • Meberg PJ . (2000). Signal-regulated ADF/cofilin activity and growth cone motility. Mol Neurobiol 21: 97–107.

    Article  CAS  Google Scholar 

  • Mitra SK, Schlaepfer DD . (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 18: 516–523.

    Article  CAS  Google Scholar 

  • Moriyama K, Iida K, Yahara I . (1996). Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1: 73–86.

    Article  CAS  Google Scholar 

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T . (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108: 233–246.

    Article  CAS  Google Scholar 

  • Ono S . (2003). Regulation of actin filament dynamics by actin depolymerizing factor/cofilin and actin-interacting protein 1: new blades for twisted filaments. Biochemistry 42: 13363–13370.

    Article  CAS  Google Scholar 

  • Parsons JT . (2003). Focal adhesion kinase: the first ten years. J Cell Sci 116: 1409–1416.

    Article  CAS  Google Scholar 

  • Pollard TD, Borisy GG . (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112: 453–465.

    Article  CAS  Google Scholar 

  • Reiske HR, Kao SC, Cary LA, Guan JL, Lai JF, Chen HC . (1999). Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase-promoted cell migration. J Biol Chem 274: 12361–12366.

    Article  CAS  Google Scholar 

  • Rogers SL, Wiedemann U, Stuurman N, Vale RD . (2003). Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J Cell Biol 162: 1079–1088.

    Article  CAS  Google Scholar 

  • Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ et al. (2005). Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23: 94–101.

    Article  CAS  Google Scholar 

  • Sabourin LA, Tamai K, Seale P, Wagner J, Rudnicki MA . (2000). Caspase 3 cleavage of the Ste20-related kinase SLK releases and activates an apoptosis-inducing kinase domain and an actin-disassembling region. Mol Cell Biol 20: 684–696.

    Article  CAS  Google Scholar 

  • Samstag Y, Dreizler EM, Ambach A, Sczakiel G, Meuer SC . (1996). Inhibition of constitutive serine phosphatase activity in T lymphoma cells results in phosphorylation of pp19/cofilin and induces apoptosis. J Immunol 156: 4167–4173.

    CAS  PubMed  Google Scholar 

  • Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B et al. (2006). A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126: 269–283.

    Article  CAS  Google Scholar 

  • Shriver K, Rohrschneider L . (1981). Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus-transformed rat cells. J Cell Biol 89: 525–535.

    Article  CAS  Google Scholar 

  • Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M et al. (2001). Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2: 138–145.

    Article  CAS  Google Scholar 

  • Thomas SM, Brugge JS . (1997). Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13: 513–609.

    Article  CAS  Google Scholar 

  • Tsumura Y, Toshima J, Leeksma OC, Ohashi K, Mizuno K . (2005). Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochem J 387: 627–637.

    Article  CAS  Google Scholar 

  • Tu Y, Wu S, Shi X, Chen K, Wu C . (2003). Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 113: 37–47.

    Article  CAS  Google Scholar 

  • Tursun B, Schluter A, Peters MA, Viehweger B, Ostendorff HP, Soosairajah J et al. (2005). The ubiquitin ligase Rnf6 regulates local LIM kinase 1 levels in axonal growth cones. Genes Dev 19: 2307–2319.

    Article  CAS  Google Scholar 

  • Wakatsuki T, Wysolmerski RB, Elson EL . (2003). Mechanics of cell spreading: role of myosin II. J Cell Sci 116: 1617–1625.

    Article  CAS  Google Scholar 

  • Wu H, Parsons JT . (1993). Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 120: 1417–1426.

    Article  CAS  Google Scholar 

  • Wu X, Suetsugu S, Cooper LA, Takenawa T, Guan JL . (2004). Focal adhesion kinase regulation of N-WASP subcellular localization and function. J Biol Chem 279: 9565–9576.

    Article  CAS  Google Scholar 

  • Yan D, Guo L, Wang Y . (2006). Requirement of dendritic Akt degradation by the ubiquitin-proteasome system for neuronal polarity. J Cell Biol 174: 415–424.

    Article  CAS  Google Scholar 

  • Yap CT, Simpson TI, Pratt T, Price DJ, Maciver SK . (2005). The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motil Cytoskeleton 60: 153–165.

    Article  CAS  Google Scholar 

  • Yeatman TJ . (2004). A renaissance for SRC. Nat Rev Cancer 4: 470–480.

    Article  CAS  Google Scholar 

  • Yoo Y, Wu X, Egile C, Li R, Guan JL . (2006). Interaction of N-WASP with hnRNPK and its role in filopodia formation and cell spreading. J Biol Chem 281: 15352–15360.

    Article  CAS  Google Scholar 

  • Zigmond SH . (2004). Formin-induced nucleation of actin filaments. Curr Opin Cell Biol 16: 99–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Xiaoyang Wu for discussions during the initial stages of the project. We thank our colleagues Huijun Wei, Ming Luo, Huaping Fan, Fei Liu, Chenran Wang, Richard Liang, Ann Park and Xiaofeng Zhao for their critical reading of the paper and helpful comments. This research was supported by NIH grant GM48050 to J-L Guan.

Author information

Authors and Affiliations

Corresponding author

Correspondence to J -L Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, Y., Ho, H., Wang, C. et al. Tyrosine phosphorylation of cofilin at Y68 by v-Src leads to its degradation through ubiquitin–proteasome pathway. Oncogene 29, 263–272 (2010). https://doi.org/10.1038/onc.2009.319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2009.319

Keywords

This article is cited by

Search

Quick links