Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Deleting Ku70 is milder than deleting Ku80 in p53-mutant mice and cells

Abstract

Ku70 forms a heterodimer with Ku80, called Ku that is well known for repairing DNA double-strand breaks through non-homologous end joining. As a result, deletion of either causes a very similar phenotype in mice that includes hypersensitivity to clastogens and early aging. In addition, deletion of Ku80 along with the cell cycle checkpoint protein, p53, dramatically increases the incidence of pro-B-cell lymphoma. Even though Ku70- p53-mutant mice have not been analysed, a logical assumption is they would exhibit the same cancer phenotype. Here, we test this assumption by comparing p53-mutant littermates deleted for either Ku70 or Ku80 or both. We find this assumption to be incorrect as p53-mutants live significantly longer when deleted for Ku70 rather than Ku80 or Ku70+Ku80. We also find the former cohort displays much lower levels of pro-B-cell lymphoma than the latter two cohorts. As pro-B-cell lymphoma is caused by a translocation between chromosomes 12 and 15, we tested fibroblasts for DNA repair capacity, and found that p53-mutant fibroblasts are more sensitive to streptonigrin and paraquat when deleted for Ku80 as compared with Ku70. Thus, Ku80 may function outside the Ku heterodimer to influence DNA damage repair presenting the possibility that Ku80 influenced the open coding ends in a manner that suppressed a cancer-causing translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Bolzan AD, Bianchi MS . (2001). Genotoxicity of streptonigrin: a review. Mutat Res 488: 25–37.

    Article  CAS  Google Scholar 

  • Brown KD, Lataxes TA, Shangary S, Mannino JL, Giardina JF, Chen J et al. (2000). Ionizing radiation exposure results in up-regulation of Ku70 via a p53/ataxia-telangiectasia-mutated protein-dependent mechanism. J Biol Chem 275: 6651–6656.

    Article  CAS  Google Scholar 

  • Burma S, Chen BP, Chen DJ . (2006). Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst) 5: 1042–1048.

    Article  CAS  Google Scholar 

  • Bus JS, Aust SD, Gibson JE . (1974). Superoxide- and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem Biophys Res Commun 58: 749–755.

    Article  CAS  Google Scholar 

  • Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE et al. (2000). DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404: 510–514.

    Article  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  CAS  Google Scholar 

  • Gao Y, Ferguson DO, Xie W, Manis JP, Sekiguchi J, Frank KM et al. (2000). Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404: 897–900.

    Article  CAS  Google Scholar 

  • Goedecke W, Eijpe M, Offenberg HH, van Aalderen M, Heyting C . (1999). Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 23: 194–198.

    Article  CAS  Google Scholar 

  • Gomez JA, Gama V, Yoshida T, Sun W, Hayes P, Leskov K et al. (2007). Bax-inhibiting peptides derived from Ku70 and cell-penetrating pentapeptides. Biochem Soc Trans 35: 797–801.

    Article  CAS  Google Scholar 

  • Gu Y, Jin S, Gao Y, Weaver DT, Alt FW . (1997a). Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc Natl Acad Sci USA 94: 8076–8081.

    Article  CAS  Google Scholar 

  • Gu Y, Seidl KJ, Rathbun GA, Zhu C, Manis JP, van der Stoep N et al. (1997b). Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7: 653–665.

    Article  CAS  Google Scholar 

  • Gu Y, Sekiguchi J, Gao Y, Dikkes P, Frank K, Ferguson D et al. (2000). Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc Natl Acad Sci USA 97: 2668–2673.

    Article  CAS  Google Scholar 

  • Holcomb VB, Rodier F, Choi Y, Busuttil RA, Vogel H, Vijg J et al. (2008). Ku80 deletion suppresses spontaneous tumors and induces a p53-mediated DNA damage response. Cancer Res 68: 9497–9502.

    Article  CAS  Google Scholar 

  • Holcomb VB, Vogel H, Hasty P . (2007). Deletion of Ku80 causes early aging independent of chronic inflammation and Rag-1-induced DSBs. Mech Ageing Dev 128: 601–608.

    Article  CAS  Google Scholar 

  • Holcomb VB, Vogel H, Marple T, Kornegay RW, Hasty P . (2006). Ku80 and p53 suppress medulloblastoma that arise independent of Rag-1-induced DSBs. Oncogene 25: 7159–7165.

    Article  CAS  Google Scholar 

  • Hsu HL, Gilley D, Galande SA, Hande MP, Allen B, Kim SH et al. (2000). Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14: 2807–2812.

    Article  CAS  Google Scholar 

  • Koike M, Shiomi T, Koike A . (2000). Ku70 can translocate to the nucleus independent of Ku80 translocation and DNA-PK autophosphorylation. Biochem Biophys Res Commun 276: 1105–1111.

    Article  CAS  Google Scholar 

  • Li H, Vogel H, Holcomb VB, Gu Y, Hasty P . (2007). Deletion of Ku70, Ku80, or both causes early aging without substantially increased cancer. Mol Cell Biol 27: 8205–8214.

    Article  CAS  Google Scholar 

  • Lim DS, Vogel H, Willerford DM, Sands AT, Platt KA, Hasty P . (2000). Analysis of ku80-mutant mice and cells with deficient levels of p53. Mol Cell Biol 20: 3772–3780.

    Article  CAS  Google Scholar 

  • Lim JW, Kim KH, Kim H . (2008). NF-kappaB p65 regulates nuclear translocation of Ku70 via degradation of heat shock cognate protein 70 in pancreatic acinar AR42J cells. Int J Biochem Cell Biol 40: 2065–2077.

    Article  CAS  Google Scholar 

  • Marple T, Li H, Hasty P . (2004). A genotoxic screen: rapid analysis of cellular dose-response to a wide range of agents that either damage DNA or alter genome maintenance pathways. Mutat Res 554: 253–266.

    Article  CAS  Google Scholar 

  • Mazumder S, Plesca D, Kinter M, Almasan A . (2007). Interaction of a cyclin E fragment with Ku70 regulates Bax-mediated apoptosis. Mol Cell Biol 27: 3511–3520.

    Article  CAS  Google Scholar 

  • Munakata Y, Saito-Ito T, Kumura-Ishii K, Huang J, Kodera T, Ishii T et al. (2005). Ku80 autoantigen as a cellular coreceptor for human parvovirus B19 infection. Blood 106: 3449–3456.

    Article  CAS  Google Scholar 

  • Nussenzweig A, Chen C, da Costa Soares V, Sanchez M, Sokol K, Nussenzweig MC et al. (1996). Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382: 551–555.

    Article  CAS  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    Article  CAS  Google Scholar 

  • Romero F, Dargemont C, Pozo F, Reeves WH, Camonis J, Gisselbrecht S et al. (1996). p95vav associates with the nuclear protein Ku-70. Mol Cell Biol 16: 37–44.

    Article  CAS  Google Scholar 

  • Song K, Jung D, Jung Y, Lee SG, Lee I . (2000). Interaction of human Ku70 with TRF2. FEBS Lett 481: 81–85.

    Article  CAS  Google Scholar 

  • Song K, Jung Y, Jung D, Lee I . (2001). Human Ku70 interacts with heterochromatin protein 1alpha. J Biol Chem 276: 8321–8327.

    Article  CAS  Google Scholar 

  • Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P . (1999). Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci USA 96: 10770–10775.

    Article  CAS  Google Scholar 

  • Wang J, Dong X, Myung K, Hendrickson EA, Reeves WH . (1998). Identification of two domains of the p70 Ku protein mediating dimerization with p80 and DNA binding. J Biol Chem 273: 842–848.

    Article  CAS  Google Scholar 

  • Yang CR, Yeh S, Leskov K, Odegaard E, Hsu HL, Chang C et al. (1999). Isolation of Ku70-binding proteins (KUBs). Nucleic Acids Res 27: 2165–2174.

    Article  CAS  Google Scholar 

  • Zhu C, Bogue MA, Lim DS, Hasty P, Roth DB . (1996). Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86: 379–389.

    Article  CAS  Google Scholar 

  • Zhu P, Zhang D, Chowdhury D, Martinvalet D, Keefe D, Shi L et al. (2006). Granzyme A, which causes single-stranded DNA damage, targets the double-strand break repair protein Ku70. EMBO Rep 7: 431–437.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants from the NIH: R01 CA76317-05A1, 3P30 CA054174-16S2, P01 AG17242 and UO1 ES11044 to PH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Hasty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Choi, Y., Hanes, M. et al. Deleting Ku70 is milder than deleting Ku80 in p53-mutant mice and cells. Oncogene 28, 1875–1878 (2009). https://doi.org/10.1038/onc.2009.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2009.57

Keywords

This article is cited by

Search

Quick links