Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development

Abstract

Ubiquitination is an important post-translational modification that has a pivotal role in numerous biological functions, such as cell growth, proliferation, apoptosis, DNA damage response, innate immune response and neuron degeneration. Although ubiquitination is thought to achieve these functions by targeting proteins for proteasome-dependent degradation, recent studies suggest that ubiquitination also has nonproteolytic functions, such as protein trafficking, kinase and phosphatase activation, which are involved in cell survival and cancer development. These progresses have advanced our current understanding of the novel functions of ubiquitination in signal transduction pathways and may provide novel paradigms for the treatment of human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adhikari A, Chen ZJ . (2009). Diversity of polyubiquitin chains. Dev Cell 16: 485–486.

    Article  CAS  PubMed  Google Scholar 

  • Adhikary S, Eilers M . (2005). Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6: 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R et al. (2005). The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123: 409–421.

    Article  CAS  PubMed  Google Scholar 

  • Amati B, Sanchez-Arevalo Lobo VJ . (2007). MYC degradation: deubiquitinating enzymes enter the dance. Nat Cell Biol 9: 729–731.

    Article  CAS  PubMed  Google Scholar 

  • Ashida H, Kim M, Schmidt-Supprian M, Ma A, Ogawa M, Sasakawa C . (2010). A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKgamma to dampen the host NF-kappaB-mediated inflammatory response. Nat Cell Biol 12: 66–73, sup pp 61–69.

    Article  CAS  PubMed  Google Scholar 

  • Askham JM, Platt F, Chambers PA, Snowden H, Taylor CF, Knowles MA . (2010). AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene 29: 150–155.

    Article  CAS  PubMed  Google Scholar 

  • Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N . (2002). Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277: 39858–39866.

    Article  CAS  PubMed  Google Scholar 

  • Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D et al. (1998). Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17: 313–325.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J et al. (2008). cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30: 689–700.

    Article  CAS  PubMed  Google Scholar 

  • Bhoj VG, Chen ZJ . (2009). Ubiquitylation in innate and adaptive immunity. Nature 458: 430–437.

    Article  CAS  PubMed  Google Scholar 

  • Brazil DP, Park J, Hemmings BA . (2002). PKB binding proteins: getting in on the Akt. Cell 111: 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Li M, Hu M, Shi Y, Gu W. . (2007). The p53—Mdm2—HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene 26: 7262–7266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummelkamp TR, Nijman SM, Dirac AM, Bernards R . (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424: 797–801.

    Article  CAS  PubMed  Google Scholar 

  • Cantley LC . (2002). The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.

    Article  CAS  PubMed  Google Scholar 

  • Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448: 439–444.

    Article  CAS  PubMed  Google Scholar 

  • Chang CJ, Mulholland DJ, Valamehr B, Mosessian S, Sellers WR, Wu H . (2008). PTEN nuclear localization is regulated by oxidative stress and mediates p53-dependent tumor suppression. Mol Cell Biol 28: 3281–3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Kon N, Li M, Zhang W, Qin J, Gu W . (2005). ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121: 1071–1083.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ . (2005). Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7: 758–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Sun LJ . (2009). Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33: 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Colland F, Formstecher E, Jacq X, Reverdy C, Planquette C, Conrath S et al. (2009). Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol Cancer Ther 8: 2286–2295.

    Article  CAS  PubMed  Google Scholar 

  • Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q et al. (2009). Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459: 717–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conze DB, Wu CJ, Thomas JA, Landstrom A, Ashwell JD . (2008). Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation. Mol Cell Biol 28: 3538–3547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummins JM, Vogelstein B . (2004). HAUSP is required for p53 destabilization. Cell Cycle 3: 689–692.

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME . (1999). Cellular survival: a play in three Akts. Genes Dev 13: 2905–2927.

    Article  CAS  PubMed  Google Scholar 

  • De Schutter J, Guillabert A, Imbault V, Degraef C, Erneux C, Communi D et al. (2009). SHIP2 (SH2 domain-containing inositol phosphatase 2) SH2 domain negatively controls SHIP2 monoubiquitination in response to epidermal growth factor. J Biol Chem 284: 36062–36076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cristofano A, Pandolfi PP . (2000). The multiple roles of PTEN in tumor suppression. Cell 100: 387–390.

    Article  CAS  PubMed  Google Scholar 

  • Dickey CA, Koren J, Zhang YJ, Xu YF, Jinwal UK, Birnbaum MJ et al. (2008). Akt and CHIP coregulate tau degradation through coordinated interactions. Proc Natl Acad Sci USA 105: 3622–3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C et al. (2008). The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27: 1932–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallon L, Belanger CM, Corera AT, Kontogiannea M, Regan-Klapisz E, Moreau F et al. (2006). A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol 8: 834–842.

    Article  CAS  PubMed  Google Scholar 

  • Fouladkou F, Landry T, Kawabe H, Neeb A, Lu C, Brose N et al. (2008). The ubiquitin ligase Nedd4-1 is dispensable for the regulation of PTEN stability and localization. Proc Natl Acad Sci USA 105: 8585–8590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giasson BI, Lee VM . (2003). Are ubiquitination pathways central to Parkinson's disease? Cell 114: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez E, McGraw TE . (2009). The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8: 2502–2508.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Nunez G et al. (2008). A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J 27: 373–383.

    Article  CAS  PubMed  Google Scholar 

  • Heemers HV, Tindall DJ . (2009). Unraveling the complexities of androgen receptor signaling in prostate cancer cells. Cancer Cell 15: 245–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heldin CH, Landstrom M, Moustakas A . (2009). Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21: 166–176.

    Article  CAS  PubMed  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4: 988–1004.

    Article  CAS  PubMed  Google Scholar 

  • Herold S, Herkert B, Eilers M. . (2009). Facilitating replication under stress: an oncogenic function of MYC? Nat Rev Cancer 9: 441–444.

    Article  CAS  PubMed  Google Scholar 

  • Hicke L, Schubert HL, Hill CP . (2005). Ubiquitin-binding domains. Nat Rev Mol Cell Biol 6: 610–621.

    Article  CAS  PubMed  Google Scholar 

  • Hoeller D, Dikic I . (2009). Targeting the ubiquitin system in cancer therapy. Nature 458: 438–444.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann RM, Pickart CM . (2001). in vitro assembly and recognition of Lys-63 polyubiquitin chains. J Biol Chem 276: 27936–27943.

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Wang P, Lin L, Liu X, Ma F, An H et al. (2009). MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183: 2150–2158.

    Article  CAS  PubMed  Google Scholar 

  • Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB et al. (2007). RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131: 901–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR . (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res 69: 1279–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes NE, MacDonald G . (2009). ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21: 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF et al. (2000). An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem 275: 27823–27831.

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K et al. (2009). Frequent inactivation of A20 in B-cell lymphomas. Nature 459: 712–716.

    Article  CAS  PubMed  Google Scholar 

  • Klein S, Levitzki A . (2009). Targeting the EGFR and the PKB pathway in cancer. Curr Opin Cell Biol 21: 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Kon N, Kobayashi Y, Li M, Brooks CL, Ludwig T, Gu W . (2009). Inactivation of HAUSP in vivo modulates p53 function. Oncogene 29: 1270–1279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong M, Bui TV, Ditsworth D, Gruber JJ, Goncharov D, Krymskaya VP et al. (2007). The PP2A-associated protein alpha4 plays a critical role in the regulation of cell spreading and migration. J Biol Chem 282: 29712–29720.

    Article  CAS  PubMed  Google Scholar 

  • Korchnak AC, Zhan Y, Aguilar MT, Chadee DN . (2009). Cytokine-induced activation of mixed lineage kinase 3 requires TRAF2 and TRAF6. Cell Signal 21: 1620–1625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G . (2003). The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424: 801–805.

    Article  CAS  PubMed  Google Scholar 

  • Lazar DF, Saltiel AR . (2006). Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat Rev Drug Discov 5: 333–342.

    Article  CAS  PubMed  Google Scholar 

  • Lee RJ, Albanese C, Fu M, D′Amico M, Lin B, Watanabe G et al. (2000). Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol 20: 672–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W . (2003). Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302: 1972–1975.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J et al. (2002). Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416: 648–653.

    Article  CAS  PubMed  Google Scholar 

  • Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH et al. (2010). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464: 374–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH et al. (2009). Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol 11: 420–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Cheng H, Roberts TM, Zhao JJ . (2009). Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8: 627–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch OT, Gadina M . (2004). Ubiquitination for activation: new directions in the NF-kappaB roadmap. Mol Interv 4: 144–146.

    CAS  PubMed  Google Scholar 

  • Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C et al. (2007). RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131: 887–900.

    Article  CAS  PubMed  Google Scholar 

  • Mauro C, Pacifico F, Lavorgna A, Mellone S, Iannetti A, Acquaviva R et al. (2006). ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol Chem 281: 18482–18488.

    Article  CAS  PubMed  Google Scholar 

  • McConnell JL, Watkins GR, Soss SE, Franz HS, McCorvey LR, Spiller BW . (2010). Alpha4 is a ubiquitin-binding protein that regulates protein serine/threonine phosphatase 2A ubiquitination. Biochemistry 49: 1713–1718.

    Article  CAS  PubMed  Google Scholar 

  • Meulmeester E, Maurice MM, Boutell C, Teunisse AF, Ovaa H, Abraham TE et al. (2005a). Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol Cell 18: 565–576.

    Article  CAS  PubMed  Google Scholar 

  • Meulmeester E, Pereg Y, Shiloh Y, Jochemsen AG . (2005b). ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle 4: 1166–1170.

    Article  CAS  PubMed  Google Scholar 

  • Monami G, Emiliozzi V, Morrione A . (2008). Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization. J Cell Physiol 216: 426–437.

    Article  CAS  PubMed  Google Scholar 

  • Novak U, Rinaldi A, Kwee I, Nandula SV, Rancoita PM, Compagno M et al. (2009). The NF-{kappa}B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in margin. Blood 113: 4918–4921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Kim YG, McDonald C, Kanneganti TD, Hasegawa M, Body-Malapel M et al. (2007). RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol 178: 2380–2386.

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM . (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503–533.

    Article  CAS  PubMed  Google Scholar 

  • Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R et al. (2007). The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 9: 765–774.

    Article  CAS  PubMed  Google Scholar 

  • Raiborg C, Stenmark H . (2009). The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458: 445–452.

    Article  CAS  PubMed  Google Scholar 

  • Rong SB, Hu Y, Enyedy I, Powis G, Meuillet EJ, Wu X et al. (2001). Molecular modeling studies of the Akt PH domain and its interaction with phosphoinositides. J Med Chem 44: 898–908.

    Article  CAS  PubMed  Google Scholar 

  • Salmena L, Carracedo A, Pandolfi PP . (2008). Tenets of PTEN tumor suppression. Cell 133: 403–414.

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Fujita N, Tsuruo T . (2000). Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 97: 10832–10837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehat B, Andersson S, Girnita L, Larsson O . (2008). Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis. Cancer Res 68: 5669–5677.

    Article  CAS  PubMed  Google Scholar 

  • Shambharkar PB, Blonska M, Pappu BP, Li H, You Y, Sakurai H et al. (2007). Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways. EMBO J 26: 1794–1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan J, Zhao W, Gu W . (2009). Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell 36: 469–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y . (2009). Serine/threonine phosphatases: mechanism through structure. Cell 139: 468–484.

    Article  CAS  PubMed  Google Scholar 

  • Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N . (2003). Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 63: 2139–2144.

    CAS  PubMed  Google Scholar 

  • Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J et al. (2008). The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455: 813–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N et al. (2008). The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10: 1199–1207.

    Article  CAS  PubMed  Google Scholar 

  • Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM et al. (2008). Modelling Myc inhibition as a cancer therapy. Nature 455: 679–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A et al. (2010). Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 16: 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK . (2007). The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 26: 976–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura AJ, Hirata N et al. (2009). The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Dev Cell 17: 800–810.

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ . (2004). The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 14: 289–301.

    Article  CAS  PubMed  Google Scholar 

  • Sun SC . (2008). Deubiquitylation and regulation of the immune response. Nat Rev Immunol 8: 501–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun SC . (2009). CYLD: a tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. Cell Death Differ 17: 25–34.

    Article  CAS  Google Scholar 

  • Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY et al. (2006). Critical role for Daxx in regulating Mdm2. Nat Cell Biol 8: 855–862.

    Article  CAS  PubMed  Google Scholar 

  • Toker A . (2009). TTC3 ubiquitination terminates Akt-ivation. Dev Cell 17: 752–754.

    Article  CAS  PubMed  Google Scholar 

  • Tremblay ML, Giguere V . (2008). Phosphatases at the heart of FoxO metabolic control. Cell Metab 7: 101–103.

    Article  CAS  PubMed  Google Scholar 

  • Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH et al. (2001). MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet 29: 287–294.

    Article  CAS  PubMed  Google Scholar 

  • Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP . (2006). Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441: 523–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H et al. (2007). Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128: 141–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Themsche C, Leblanc V, Parent S, Asselin E . (2009). X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. J Biol Chem 284: 20462–20466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varghese B, Barriere H, Carbone CJ, Banerjee A, Swaminathan G, Plotnikov A et al. (2008). Polyubiquitination of prolactin receptor stimulates its internalization, postinternalization sorting, and degradation via the lysosomal pathway. Mol Cell Biol 28: 5275–5287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varnai P, Bondeva T, Tamas P, Toth B, Buday L, Hunyady L et al. (2005). Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J Cell Sci 118: 4879–4888.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z et al. (2007). NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128: 129–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP . (2009). Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15: 416–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang T, Ohashi A, Huang Y, Pandita TK, Ludwig T, Powell SN et al. (2008). Negative regulation of AKT activation by BRCA1. Cancer Res 68: 10040–10044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Shimelis H, Linn DE, Jiang R, Yang X, Sun F et al. (2009). Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell 15: 270–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE . (2008). TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31: 918–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki K, Gohda J, Kanayama A, Miyamoto Y, Sakurai H, Yamamoto M et al. (2009). Two mechanistically and temporally distinct NF-kappaB activation pathways in IL-1 signaling. Sci Signal 2: ra66.

    Article  PubMed  Google Scholar 

  • Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B et al. (2009). The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325: 1134–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WL, Wu CY, Wu J, Lin HK . (2010). Regulation of Akt signaling activation by ubiquitination. Cell Cycle 9: 486–497.

    Article  CAS  Google Scholar 

  • Yu Q, Geng Y, Sicinski P . (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411: 1017–1021.

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Luo K, Zhang L, Cheville JC, Lou Z . (2010). USP10 regulates p53 localization stability by deubiquitinating p53. Cell 140: 384–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Q, Gao W, Du F, Wang X . (2005). Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121: 1085–1095.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Lin's laboratory for their comments and suggestions. We extend our special thanks to Yuan Gao for her critical reading and for editing the paper. We apologize to many investigators whose important works were not cited here due to space limitations. This work is supported by the MD Anderson Research Trust Scholar Fund, a RO1 grant from NCI, and New Investigator Award from the Department of Defense to HK Lin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-K Lin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, WL., Zhang, X. & Lin, HK. Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene 29, 4493–4503 (2010). https://doi.org/10.1038/onc.2010.190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2010.190

Keywords

This article is cited by

Search

Quick links