Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Delaying mitotic exit downregulates FLIP expression and strongly sensitizes tumor cells to TRAIL

Abstract

Many of the current antitumor therapeutic strategies are based on the perturbation of the cell cycle, especially during mitosis. Antimitotic drugs trigger mitotic checkpoint activation, mitotic arrest and eventually cell death. However, mitotic slippage represents a major mechanism of resistance to these treatments. In an attempt to circumvent the process of slippage, targeting mitotic exit has been proposed as a better strategy to kill tumor cells. In this study, we show that treatments that induce mitotic checkpoint activation and mitotic arrest downregulate FLICE-like inhibitory protein (FLIP) levels and sensitize several tumor cell lines to TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-induced apoptosis. Interestingly, we also demonstrate that in absence of mitotic checkpoint activation, mitotic arrest induced either by Cdc20 knockdown or overexpression of nondegradable cyclin B is sufficient to induce both FLIP downregulation and sensitivity to TRAIL. In summary, our data suggest that a combination of antimitotic drugs targeting cyclin B degradation and TRAIL might prevent mitotic slippage and allow tumor cells to reach the threshold for apoptosis induction, thereby facilitating tumor suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5: 157–163.

    Article  CAS  PubMed  Google Scholar 

  3. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673–682.

    Article  CAS  PubMed  Google Scholar 

  4. Ashkenazi A . Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 2008; 7: 1001–1012.

    Article  CAS  PubMed  Google Scholar 

  5. Grosse-Wilde A, Voloshanenko O, Bailey SL, Longton GM, Schaefer U, Csernok AI et al. TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. J Clin Invest 2008; 118: 100–110.

    Article  CAS  PubMed  Google Scholar 

  6. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ . Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 1998; 161: 2833–2840.

    CAS  PubMed  Google Scholar 

  7. Palacios C, Yerbes R, Lopez-Rivas A . Flavopiridol induces cellular FLICE-inhibitory protein degradation by the proteasome and promotes TRAIL-induced early signaling and apoptosis in breast tumor cells. Cancer Res 2006; 66: 8858–8869.

    Article  CAS  PubMed  Google Scholar 

  8. Sanchez-Perez T, Ortiz-Ferron G, Lopez-Rivas A . Mitotic arrest and JNK-induced proteasomal degradation of FLIP and Mcl-1 are key events in the sensitization of breast tumor cells to TRAIL by antimicrotubule agents. Cell Death Differ 2010; 17: 883–894.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P . Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res 1999; 59: 2747–2753.

    CAS  PubMed  Google Scholar 

  10. Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2000; 2: 241–253.

    Article  CAS  PubMed  Google Scholar 

  11. Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P, Blenis J et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 2000; 12: 599–609.

    Article  CAS  PubMed  Google Scholar 

  12. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388: 190–195.

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  14. Jordan MA, Wilson L . Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4: 253–265.

    Article  CAS  PubMed  Google Scholar 

  15. Janssen A, Medema RH . Mitosis as an anti-cancer target. Oncogene 2011; 30: 2799–2809.

    Article  CAS  PubMed  Google Scholar 

  16. Rath O, Kozielski F . Kinesins and cancer. Nat Rev Cancer 2012; 12: 527–539.

    Article  CAS  PubMed  Google Scholar 

  17. Weaver BA, Cleveland DW . Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell. 2005; 8: 7–12.

    Article  CAS  PubMed  Google Scholar 

  18. Gascoigne KE, Taylor SS . Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 2008; 14: 111–122.

    Article  CAS  PubMed  Google Scholar 

  19. Brito DA, Rieder CL . Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 2006; 16: 1194–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang HC, Shi J, Orth JD, Mitchison TJ . Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell 2009; 16: 347–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Manchado E, Guillamot M, de Carcer G, Eguren M, Trickey M, Garcia-Higuera I et al. Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, Mastl, and the PP2A/B55alpha,delta phosphatase. Cancer Cell 2010; 18: 641–654.

    Article  CAS  PubMed  Google Scholar 

  22. Santaguida S, Tighe A, D'Alise AM, Taylor SS, Musacchio A . Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J Cell Biol 2010; 190: 73–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S et al. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 2001; 106: 83–93.

    Article  CAS  PubMed  Google Scholar 

  24. Tighe A, Staples O, Taylor S . Mps1 kinase activity restrains anaphase during an unperturbed mitosis and targets Mad2 to kinetochores. J Cell Biol 2008; 181: 893–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wasch R, Cross FR . APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 2002; 418: 556–562.

    Article  PubMed  Google Scholar 

  26. Chang DC, Xu N, Luo KQ . Degradation of cyclin B is required for the onset of anaphase in Mammalian cells. J Biol Chem 2003; 278: 37865–37873.

    Article  CAS  PubMed  Google Scholar 

  27. Holloway SL, Glotzer M, King RW, Murray AW . Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 1993; 73: 1393–1402.

    Article  CAS  PubMed  Google Scholar 

  28. Piao X, Komazawa-Sakon S, Nishina T, Koike M, Piao JH, Ehlken H et al. c-FLIP maintains tissue homeostasis by preventing apoptosis and programmed necrosis. Sci Signal 2012; 5: ra93.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Allan LA, Clarke PR . Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell 2007; 26: 301–310.

    Article  CAS  PubMed  Google Scholar 

  30. Harley ME, Allan LA, Sanderson HS, Clarke PR . Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J 2010; 29: 2407–2420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matthess Y, Raab M, Sanhaji M, Lavrik IN, Strebhardt K . Cdk1/cyclin B1 controls Fas-mediated apoptosis by regulating caspase-8 activity. Mol Cell Biol 2010; 30: 5726–5740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Terrano DT, Upreti M, Chambers TC . Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol 2010; 30: 640–656.

    Article  CAS  PubMed  Google Scholar 

  33. Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 2011; 471: 110–114.

    Article  CAS  PubMed  Google Scholar 

  34. Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K et al. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 2006; 124: 601–613.

    Article  CAS  PubMed  Google Scholar 

  35. Gottesfeld JM, Forbes DJ . Mitotic repression of the transcriptional machinery. Trends Biochem Sci 1997; 22: 197–202.

    Article  CAS  PubMed  Google Scholar 

  36. Pyronnet S, Dostie J, Sonenberg N . Suppression of cap-dependent translation in mitosis. Genes Dev 2001; 15: 2083–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L . Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 1996; 56: 816–825.

    CAS  PubMed  Google Scholar 

  38. Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff KL, Oh DC et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 2010; 18: 382–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES . Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 1997; 272: 25417–25420.

    Article  CAS  PubMed  Google Scholar 

  40. Ruiz-Ruiz C, Lopez-Rivas A . Mitochondria-dependent and -independent mechanisms in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis are both regulated by interferon-gamma in human breast tumour cells. Biochem J 2002; 365: 825–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants SAF2009-07163 and SAF2012-32824 from Ministerio de Ciencia e Innovación, Red Temática de Investigación Cooperativa en Cáncer (RTICC: RD06/0020/0068 and RD12/0036/0026), the European Community through the regional development funding program (FEDER) and Junta de Andalucía (P09-CVI-4497) to AL-R. TS-P was supported by contracts from Ministerio de Economía y Competitividad (MINECO). We are grateful to Aniek Janssen, Mónica Álvarez and Martin Vromans for providing helpful advice and discussions. We also thank FJ Fernandez-Farrán for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A López-Rivas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Pérez, T., Medema, R. & López-Rivas, A. Delaying mitotic exit downregulates FLIP expression and strongly sensitizes tumor cells to TRAIL. Oncogene 34, 661–669 (2015). https://doi.org/10.1038/onc.2013.601

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2013.601

Keywords

This article is cited by

Search

Quick links