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ORIGINAL ARTICLE

Constitutively activated PI3K accelerates tumor initiation
and modifies histopathology of breast cancer

MR Sheen', JD Marotti***, MJ Allegrezza®, M Rutkowski’, JR Conejo-Garcia® and S Fiering"*®

The gene encoding phosphatidylinositol 3-kinase catalytic subunit a-isoform (PIK3CA, p110a) is frequently activated by mutation in
human cancers. Based on detection in some breast cancer precursors, PIK3CA mutations have been proposed to have a role in
tumor initiation. To investigate this hypothesis, we generated a novel mouse model with a Cre-recombinase regulated allele of
p110a (myristoylated-p110a, myr-p110a) along with p53™" deletion and Kras®'?? also regulated by Cre-recombinase. After
instillation of adenovirus-expressing Cre-recombinase into mammary ducts, we found that myr-p770a accelerated breast tumor
initiation in a copy number-dependent manner. Breast tumors induced by p53™":Kras®’?? with no or one copy of myr-p110a had
predominantly sarcomatoid features, whereas two copies of myr-p770a resulted in tumors with a carcinoma phenotype. This novel
model provides experimental support for importance of active p110a in breast tumor initiation, and shows that the amount of PI3K

activity can affect the rate of tumor initiation and modify the histological phenotype of breast cancer.
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INTRODUCTION

Receptor tyrosine kinase-phosphatidylinositol 3-kinase (PI3K)
signaling is a central integrator of metabolism, cell growth
and cell survival, and deregulated PI3K signaling increases
tumorigenicity.'? Cancer-associated mutations occur in several
components of the pathway including activating mutations of
both the PI3K catalytic subunit a-isoform gene (PIK3CA, p110a)®
and the downstream signaling molecule AKT1,* as well as deletion
of the negative pathway regulator, PTEN.” These alterations all
result in increased activity of the PI3K signaling pathway. The
significance of p770a in cancer is demonstrated by the high
frequency of activating mutations in many common human
cancers that increase the catalytic activity of PI3K>®

High-throughput RNA sequencing and tumor resequencing
have revealed that hyperactivating mutations in the PI3K signaling
pathway occur in a substantial percentage of breast cancers.” The
PIK3CA gene itself, encoding the p110a catalytic subunit, is the
most frequently mutated gene in breast cancer,®® with mutations
in 25-40% of all breast cancers.'®'’ However, the prognostic
implications of p770a mutations remain unclear. Although the
association of PI3K mutations with poor prognosis has been
reported,'>'® others have described a correlation with improved
outcome.'*!?

Whole-exome analysis of finely dissected and matched
mammary tumors has shown that alterations in the p770a gene
are detected at the same frequencies in ductal carcinoma in situ
(DCIS), DCIS adjacent to invasive carcinoma and invasive
carcinoma.'® In addition, the p770a sequences are often found
to be identical in invasive and in situ areas of the same breast
tumor."® This pattern of mutation suggests that p770a mutations
are a relatively early event in breast cancer development. In light
of these findings, mutational activation of the PI3K signaling

pathway has been proposed to have a role in breast tumor
initiation.

Multiple mouse models of the PI3K pathway-driven cancer have
recently been developed to investigate the impact of PI3K
mutation or combination of other related mutations on breast
cancer development under the control of MMTV LTR or WAP
promoter.'”” 2" However, the role of PI3K activation in tumor
initiation, progression and phenotype is not well understood. In
the present study, the PI3K catalytic subunit p110a was
myristoylated to force localization to the cell membrane, which
is sufficient to release its kinase activity from normal regulation,
and to thus activate the PI3K signaling pathway. The expression of
myristoylated-p1710a was regulated by Cre-recombinase expressed
from Ad-Cre virus, which allowed for spatial and temporal
experimental control. To ascertain the impact of p710a activating
mutations in tumor initiation and progression, we combined
myr-p110a with frequently co-occurring mutations of two genes,
p53 and Kras, to generate novel models of breast, lung and
potentially other cancers whose induction is controlled by the
researcher.

RESULTS

In vivo expression of myr-p710a and homozygous p53 deletion in
milk duct causes slowly developing mammary tumors

To elucidate the role of activating mutations of pi70a
in tumorigenesis, we engineered a mouse with conditional
myristoylated-p770a (myr-p110a) ubiquitously expressed from
the Rosa26 locus (Supplementary Figure 1).2? Constitutive expres-
sion of myr-p110a during development was embryonic lethal.?
To have temporal and spatial control over tumorigenic genetic
changes in breast cancer, we utilized in vivo administration of
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adenovirus-expressing  Cre-recombinase (Ad-Cre) into the
mammary duct of virgin females.”®

As activated myr-p7170a by itself had minimal transforming
activity (Supplementary Figure 2) and the p53 gene is the second
most frequently mutated gene in breast cancer®?* we assessed
the effect of myr-p770a and homozygous p53 deletion on breast

tumor development. In line with its tumorigenic potential in
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mouse embryonic fibroblasts (MEFs; Supplementary Figure 2)
and previous studies showing the cooperation between
Pik3ca'%*’® activating mutation and p53 knockout in vivo,'’°
mice expressing one copy of myr-p170a and homozygous for
p53 deletion (p53"™":myr-p110a"“") developed mammary tumors
with 100% penetrance but with a long latency (mean tumor onset
259.6 + 10.6 days; Figure 1a). Histological analysis of the tumors
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revealed predominantly poorly differentiated or dedifferentiated
malignant neoplasms with sarcomatoid features as well as small
areas of high-grade carcinoma. The sarcomatoid neoplasms were
positive for estrogen receptor a (ERa), focal progesterone receptor
(PR) and vimentin (mesenchymal marker); they were negative for
cytokeratin 5 (CK5, basal epithelial marker), cytokeratin 14 (CK14,
myoepithelial marker), cytokeratin 8 (CK8, luminal epithelial
marker) and human epidermal growth factor receptor 2
(Her2/neu; Figure 1b). In contrast, mice harboring either
myr-p170a*"" or homozygous p53 deletion only, failed to form
mammary tumors during 12 months of observation.

Mammary tumors expressing p53™":myr-p110a**" activate PI3K
signaling

Increased PI3K signaling activates AKT, a key downstream effector
of PI3K signaling pathway.>® To test for PI3K signaling activation,
mammary tumors were analyzed for levels of total p110aq, total
AKT, the active phosphorylated form of AKT (p-AKT), PI3K
regulatory subunit p85a, PI3K negative regulator PTEN and the
less active phosphorylated form of PTEN with reduced lipid
phosphatase activity (p-PTEN).2®*?” As compared with normal
mammary tissue, mammary tumors from p53ﬂ/ﬂ;myr—p770am/ﬂ
females had elevated levels of total p110a (32-fold), p-AKT
(37-fold) and p-AKT/AKT ratio (34-fold; Figures 1c and d).
Expression of myr-p7110a was confirmed by the detection of GFP
in  mammary tumors (Figure 1c). The p53ﬂ/ﬂ;myr—p770aWt/ﬂ
mammary tumors also displayed significantly increased total
protein levels of p85a (1.9-fold), PTEN (1.3-fold) and p-PTEN
(1.7-fold; Figures 1e and f), suggesting naturally occurring
negative feedback mechanisms to inhibit abnormal PI3K activity
driven by myr-p7710a. Elevated levels of p-AKT were associated
with the increased PI3K activity despite increased levels of PI3K
regulators, p85a and PTEN, demonstrating ineffective regulation
by increased p85a and PTEN.

Addition of myr-p110a into p53"":Kras®?® double mutants
accelerates mammary tumor initiation but not tumor growth rate

It has been proposed that PIK3CA has a role in tumor initiation,
as its mutations are detected in precursors of breast cancer.?®
To investigate the role of myr-p770a in tumor initiation and
progression, we exploited the Cre-inducible oncogenic mouse
model p53ﬂ/ﬂ;KrasG72D, which harbors a homozygous p53 deletion
and a Kras®'?® activating missense allele that rapidly grows
tumors.?? Based on the published breast cancer genomics data,
Kras®™?® mutation tends to co-occur with p53 mutations
(Supplementary Figures 3A and 3B). To assess tumor initiation
and development in p53""Kras®'?P mice in the absence or
presence of myr-p110a, mice harboring p53"":Kras®'?? or p53™",
Kras®"?P;myr-p110a””" were generated. Ad-Cre virus was adminis-
tered into the milk duct of virgin females and mice were
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monitored for initial tumor formation and growth rate. Both
p53""Kras®'?P and p53™"™:Kras®?P;myr-p110a*"" mice developed
mammary tumors with 100% penetrance. Notably, although
p53"":Kras®'?P mice began to form palpable mammary tumors
(tumor size ranges 12-15 mm?) with a mean tumor onset of
54.8+0.7 days, p53"":Kras®'?P;myr-p110a**" mice started to form
palpable mammary tumors with a mean tumor onset of
28.7£0.4 days (Figure 2a), indicating roughly two-fold accelera-
tion of tumor initiation due to expression of myr-p770a.

To examine the difference in tumor progression, the period of
tumor growth was defined as the number of days between when
a mammary tumor was first observed and when the animal
reached end point, and depicted in the Kaplan—-Meier survival
curve. Although initiation was markedly accelerated, once the
tumor was established, there was no difference in tumor growth
rate between p53"":Kras®’?? and p53"":Kras®'?C;myr-p110a™"
mice. Mammary tumors from p53""Kras®’*® mice reached end
point with a mean of 18.7+0.7 days, and p53""Kras®'?P;
myr-p110a*”" mammary tumors reached end point with a mean
of 184+ 0.5 days (Figure 2b).

Mammary tumors from p53"%Kras®’?°;myr-p110a**" have higher
p-AKT levels than those from p53™":Kras®'?P

To biochemically characterize mammary tumors from p5.
Kras®'?® and p53"":Kras®'?P;myr-p110a"”", we tested the PI3K
pathway activation status of the mammary tumors by analyzing
the levels of p110a, AKT, p-AKT, p85a, PTEN and p-PTEN.

Mammary tumors from p53"™:Kras®'?? females had significantly
elevated levels of total p110a (4.5-fold), p-AKT (11-fold) and
p-AKT/AKT ratio (10-fold) as shown in Figures 2c and d, in
comparison with normal mammary tissue. p53"™Kras®'?P;
myr-plIOaWt/" mammary tumors with one copy of myr-p770a
had further elevated expression levels of total p110a (39-fold), and
this resulted in increased p-AKT levels by 48-fold and increased
p-AKT/AKT ratio (52-fold; Figures 2c and d). Expression of
myr-p110a via Ad-Cre virus injection was confirmed by GFP
expression in p53ﬂ/ﬂ;KrasG’2D;myr-p110a‘”r/ﬂ mammary tumors
(Figure 2¢).

Mammary tumors from p53"":Kras®'?;myr-p110a*”" mice had
elevated accumulation of regulatory subunit p85a by two-fold as
compared with normal mammary tissue, whereas p53"":Kras®'??
mammary tumors displayed significantly decreased p85a level
(0.6-fold) as shown in Figures 2e and f. The PTEN levels had a
modest but statistically significant 0.6-fold decrease in p53™";
Kras®’?® mammary tumors compared with normal mammary
tissue (Figures 2e and f). The ratios of p-PTEN/PTEN were slightly
but significantly increased in  p53""Kras®?°;myr-p110a"?"
(1.3-fold) mammary tumors (Figure 3f), indicating overall increase
of less active p-PTEN.

3ﬂ/ﬂ;

3ﬂ/ﬂ wit/fl

Figure 1.

In vivo expression of myr-p7110a and homozygous p53 deletion in milk duct activates PI3K signaling and develops mammary tumors.

(a) Kaplan-Meier survival curve demonstrating breast tumor onset defined as the first palpation-mediated recognition of tumors (n=10 per
group). Log-rank (Mantel-Cox) test was used for statistical analysis. ***P < 0.001. (b) Hematoxylin and eosin (H&E) staining and
immunohistochemistry of mammary tumors from p53""myr-p170a*"" females stained with antibodies against following markers: ERa
(estrogen receptor a), PR (progesterone receptor), vimentin (mesenchymal marker), CK5 (basal marker), CK14 (myoepithelial marker), CK8
(luminal marker) and Her2/neu. Representative pictures of H&E staining and immunostaining were taken with x 200 magnification. Scale bar
100 um indicates scale for all images. The poorly differentiated neoplasm is immunoreactive with ERa and vimentin, and negative for the
remaining antigens. A normal duct serves as an internal control (arrow in H&E). (c) Western blot analysis of p110«, p-AKT, AKT and GFP with
normal mammary tissue and mammary tumors from p53"":myr-p170a**" mice. (d) The graphs of western blot signals of p110x, p-AKT and
p-AKT/AKT ratio quantified and normalized with respect to f-actin. (e) Western blot analysis of p85«, p-PTEN and PTEN with wild-type

mammary tissue and p53""myr-p110a™"

T mammary tumors. (f) The graphs of western blot signals of p85«, p-PTEN, PTEN and p-PTEN/PTEN

ratio quantified and normalized with respect to f-actin. For d and f, mean fold increase compared with mammary tissue lysates from a non-
Cre harboring age-matched female was calculated after normalization. Error bars are the mean + s.e.m. Two-tailed unpaired Student’s t-test
was used for statistical analysis. *P < 0.05, **P < 0.01 and ***P < 0.001. Data in c—f are representative of four independent experiments with

biological and technical replicates.

Oncogenesis (2016), 1-11



Increased PI3K activity promotes tumor initiation
MR Sheen et al

a & p537"MKras®’?P, n=13 b & p53"Kras®120 n=13
*% p53""Kras®120;myr-p1100*, n=19 = p53"Kras®'2P;myr-p 1100, n=21
100 100

8 801 80

€ **%p<0.001 -

3 60 2 60

= <

S 40 2 40

§ R

© 20 1 20 A

0 T T ™ T T A J 0 T T T — A—
0 10 20 30 40 50 60 70 0 5 10 15 20 25

days post Ad-Cre virus injection days post tumor recognition

¢ S 8 e 8 ¢ S
[Ze} [2] [Z0S] [2]
go g go 8
T <= < T X< <
Ez 255 i Bz 235t
S 4 > S 4 >
22 {E2 83 z£ QE=2 83
— — —
p110a - pesq S
p-AKT —-—e e - - P-PTEN s —ts—seares e <.
AKT PTEN o coomte e o o s o e =
GFP B-Actin - ——" — ——————
B-Actin
d [ Normal tissue f 1 Normal tissue
B p53™""Kras®20;myr-p1106* tumors B p53""Kras®"20;myr-p 1100 tumors
p53™:Kras®’2P tumors p53"Kras®720 tumors
g . - — . 3 =
H 60 e . 12 I, i>J ] [ |
= 50 . iy - - 2.0
2 ) 1.0 4 2
2T 401 "3 25 151
s g 40 0.8 1 9;.:_ ué’
c5 307 0.6 1 38 10
ol £ o
58 201 0.4 i)
s~ ’ 2€ 051
g 0] 02 &
© =
5 0 0.0 - ® 0.0 -
b4 p110ax p-AKT  p-AKT/AKT AKT & p85x p-PTEN PTEN p-PTEN/PTEN

Figure 2. Addition of myr-p710a into p53"Kras®’?P double mutants increases PI3K signaling and accelerates mammary tumor initiation with no
impact on tumor growth rate. (a) Kaplan-Meier survival curve demonstrating breast tumor onset in the two strains. Log-rank (Mantel-Cox) test was
used for statistical analysis. ***P < 0.001. (b) Kaplan-Meier survival curve demonstrating mammary tumor progression in each strain. The period of
tumor growth was defined as the number of days between when a mammary tumor was first observed in the size range of
12-15 mm? and when tumor surface area reached the end point of 100 mm? Log-rank (Mantel-Cox) test was used for statistical analysis.
P> 0.05, non-significant. (c) Western blot anmzi\rl)/sis of p110a, p-AKT, AKT and GFP with wild-type (WT) mammary tissue and mammary tumors from
p53":Kras®"?P and p53"":Kras®'?;myr-p110a“?" mice. (d) The graphs of western blot signals of p110q, p-AKT, p-AKT/AKT ratio and AKT quantified and
normalized with respect to p-actin. (e) Western blot analysis of p85a, p-PTEN and PTEN with WT mammary tissue and mammary tumors from p53™";
Kras®™P and p53™"":Kras®'P;myr-p110a"*" mice. (f) The graphs of western blot signals of p85«, p-PTEN, PTEN and p-PTEN/PTEN ratio quantified and
normalized with respect to f-actin. Mean fold increase compared with mammary tissue lysates from a non-Cre harboring age-matched female was
calculated after normalization. Error bars are the mean +s.e.m. Two-tailed unpaired Student’s t-test was used for statistical analysis. *P < 0.05,
**P < 0.01 and ***P < 0.001. Data in c—f are representative of four independent experiments with biological and technical replicates.

Two copies of myr-p110a further accelerate mammary tumor
initiation and promote tumor progression

To determine how doubling the copy number of myr-p770a would
impact tumorigenesis in this breast cancer model, we generated
homozygous mice with two copies of myr-p110a transgene along
with p53""Kras®’?P mutants (p53"":Kras®"?2;myr-p110a™). After
Ad-Cre virus administration into the milk duct of virgin females,
the time of tumor onset and tumor growth rate of p53™"™:Kras®'?>;
myr-p110a™” mammary tumors were compared with those of
p53"Kras®'?P and  p53"™Kras®'?P;myr-p110a*?"  mammary
tumors to assess the effect of homozygous myr-p770a alleles.
Intraductal delivery of Ad-Cre virus into p53""Kras®’2>,
myr-p110a™" mice induced the development of mammary tumors
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with 100% penetrance and a mean tumor onset of 15.7 + 0.6 days
(Figure 3a). This tumor initiation was much faster than
p53"KrasC?Pmyr-p110a*”" mice (one copy of myr-p110a,
287+04 days) and p53"TKras®'?? mice (zero copy of
myr-p110a, 54.8 + 0.7 days). In accordance with this result, addition
of two copies of myr-p710a into homozygous p53 deletion (p53™";
myr-p110a™ also facilitated mammary tumor initiation compared
with p53""myr-p110a™”" (135.1£6.2 days vs 259.6+10.6 days;
Figure 3b).

To check whether there would be a correlation between the
extent of PI3K signaling activation and the rate of tumor initiation,
we evaluated the PI3K signaling activation status by comparifrl}g

the levels of p-AKT between p53""myr-p110a""", p53
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Figure 3. Two copies of myr-p1710a further increase PI3K activity and accelerate mammary tumor initiation and growth rate. (a) Kaplan-Meier
survival curve demonstrating the breast tumor onset in three strains: p53ﬂ/ ﬂ;KrasG' b p53ﬂ/ ﬂ;KrasG’ZD;myr-pHOawr/ 1 and p53ﬂ/ ﬂ;KrasG'ZD;
myr-p110a™". (b) Kaplan-Meier survival curve demonstrating the breast tumor onset in three strains: p53™", p53ﬂ/ﬂ;myr;4)17001“"/ﬂ and p53"™.
myr-p110a™". (c) Western blot analysis of p1100, p-AKT and AKT with mammary tumors from p53"":myr-p110a**", p53""myr-p110a™", p53™",
Kras®?P:myr-p110a*?" and p53"™Kras®'?P;myr-p110a™" mice. (d) The graphs of western blot signals of p110w, p-AKT and p-AKT/AKT ratio
quantified and normalized with respect to p-actin. Mean fold increase compared with p53"":myr-p110a**" mammary tumors was calculated after
normalization. Error bars are the mean +s.e.m. Two-tailed unpaired Student’s t-test was used for statistical analysis. *P < 0.05, **P < 0.01 and
***p < 0.001. Data in ¢ and d are representative of three independent experiments with biological and technical replicates. (e) Kaﬁ)lan—Meier
survival curve demonstrating mammary tumor progression in three strains: p53"":Kras®?°, p53"Krase?Pmyr-p110a**" and p53"":Kras®'?;
myr-p110a™". The period of tumor growth was defined as the number of days between when a mammary tumor was first observed in the size
range of 12-15 mm? and when tumor size reached 100 mm?. For a, b and e, Log-rank (Mantel-Cox) test was used for statistical analysis with
**p <0.01 and ***P < 0.001. To determine whether copy number increase in myr-p110a would have further impact on tumor initiation and
progression in breast cancer models, the data generated from p53"7.Kras®'?P and p53ﬂ/ﬂ;KrasG’ZD;myr-p1 10a""" females shown in the Figures 2a

and b, and the data generated from p53"" and p53""myr-p110a*"" females shown in the Figure 1a, were replicated for comparison.

myr-p110a™? p53"":Kras®'?Pmyr-p110a*”" and p53"":Kras®1?°; Figure 4). These data demonstrate that a single copy of myr-p110a
myr-p1 10a™? mammary tumors. Two copies of myr-p710a does not saturate the PI3K signaling pathway with regard to p-AKT
significantly elevated levels of total p110a (1.9-fold) and p-AKT levels and two copies of myr-p170a further activate PI3K signaling
(2.1-fold), as compared with one copy of myr-p770a (Figures 3c to a greater degree than that induced by a single copy of
and d). We also tested the extent of PI3K signaling activation in myr-p110a in mammary tumors, resulting in the increased rate of
mammary tumors harboring zero, one or two copies of myr-p1710a tumor initiation.

transgene combined with either p53"" or p53™"":Kras®'?° mutants. As the rate of tumor initiation was further influenced by the
The levels of PI3K signaling activation were significantly elevated addition of Kras®™?® mutation into p53ﬂ/ﬂ;myr-p77001, which has
in a myr-p110a copy number-dependent manner (Supplementary been shown to signal primarily through the PI3K/AKT pathway,*

Oncogenesis (2016), 1-11
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(a) Representative hematoxylin and eosin (H&E) sections of mammary tumors from p53"":Kras®'?0, p53"".Kras®'2P;myr-p110a**" and p53™";

Kras®'?P;myr-p110a™" mice showing increasing epithelial differentiation with addition of myr-p710a allele. Scale bar represents 0.5 mm and
indicates scale for all images. (b) Comparison of histologic and immunohistochemical (CK8, ERq, PR and vimentin) phenotypes between p53™1,
Kras®'?P and p53"":Kras®™P;myr-p110a™" tumors. Representative H&E sections show solid sheets and fascicles of }ﬂ)leomorphic spindle cells in
p53""Kras®’? tumor compared to the epithelial nests and glands present in p53""Kras®"?®;myr-p110a™" tumor. Both tumors are
immunoreactive with CK8 and ERo; the p53™":Kras®’?° tumor is PR negative and vimentin positive, whereas the p53":Kras®'?P:myr-p110a™”

tumor is PR positive and vimentin negative. Scale bar represents 100 pm. Magnification is x 40 (a), X 400 (ER« staining of the p53"™Kras®'?P

tumor in b) or X200 (all remaining images in b).

we assessed the levels of PI3K signaling activation in p53™";
myr-p110a mammary tumors with or without Kras®’?® mutation.
Mammary tumors from p53"":Kras®'?P;myr-p110a**" and p53™"",
Kras®'?P;myr-p110a™” had significantly increased levels of total
p110a (1.3-fold) and p-AKT levels (1.3-fold), as compared with
p53" " myr-p110a””" and p53""myr-p110a™" mammary tumors as
shown in Figures 3c and d. These findings show that PI3K
signaling can be further activated by cooperation of myr-p110a
with Kras®'?® mutation, and the rate of tumor initiation is strongly
influenced by the level of PI3K activity.

Interestingly, the addition of two copies of myr-p770a also
modestly but significantly accelerated tumor progression, as
revealed by the survival curve (Figure 3e). Mammary tumors from
p53"":Kras®'?P;myr-p110a™” mice reached end point with a mean
of 15.4+0.8 days, faster than p53"":Kras®"?®;myr-p110a*"" mice
(184+0.5 days) and p53"™:Kras®'?° mice (18.7 0.7 days).
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Addition of myr-p710a into p53"™:Kras®™?® double mutants
modifies histologic phenotype

Given the inherent heterogeneity of breast cancers, mammary
tumors from the transgenic mice were characterized histologically
(Figure 4). Mammary tumors from p53""Kras®'?? mice were
mostly poorly differentiated malignant neoplasms with sarcoma-
toid features. Mammary tumors from p53"":Kras®?°;myr-p110a**"
also had a predominantly sarcomatoid histologic phenotype
similar to p53""Kras®?® mammary tumors, but ~10-15% of
tumor area was better differentiated with overt epithelial
components including DCIS, papillary carcinoma and invasive
ductal carcinoma.

Histological analysis of mammary tumors from p53"":Kras
myr-p110a™" mice demonstrated an increase in tumors with a
carcinoma phenotype including both DCIS and invasive ductal
carcinoma (Figure 4a). It was also noted that there was an increase
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in benign epithelial proliferations including adenosis and papillo-
mas. Some of the tumors had an admixed spindle cell component.
As the copy number of myr-p170a doubled, the majority of p53™7;
myr-p170a” mammary tumors also developed a carcinoma
phenotype, whereas p53ﬂ/ﬂ;myr—p7700‘"’”ﬂ mammary tumors
developed dedifferentiated mixed tumors with sarcomatoid
features and only focal areas of carcinoma (Supplementary
Figure 5). These findings show that increased PI3K activity
mediated b}/ two copies of myr-p770a, when combined with
either p53™ or p53"MKras®’?°, have the potential to skew
mammary tumors from a sarcomatoid phenotype to a carcinoma
phenotype more common in humans.

As part of the pathological characterization, tumors were
stained for the following markers: CK5, CK14, CK8, ERa, PR,
Her2/neu and vimentin. The majority of mammary tumors
(invasive and in situ carcinoma, and benign proliferations) from
p53"":Kras®"?P;myr-p110a™" mice displayed strong CK8, ERa and
PR immunostaining (Figure 4b). They were negative for vimentin
(Figure 4b), whereas CK5 and CK14 immunostains confirmed the
presence of myoepithlelial cells within DCIS and benign epithelial
proliferations (data not shown). The sarcomatoid tumors from
p53"™Kras®™?P mice were strongly positive for vimentin and
showed variable expression of CK8, ERa and PR (Figure 4b). The
were negative for CK5 and CK14. Tumors from p53"™:Kras®'?>,
myr—pHOGW”ﬂ mice displayed greater immunostaining for
CK8 compared to p53"™"Kras®’?® mice (data not shown). None
of the tumors from the three groups demonstrated positive (3+)
Her2/neu immunostaining.

G12D

Addition of myr-p710a into p53""Kras increases metastatic

potential

To assay the ability of breast tumor cells to establish tumors
outside the breast, we derived cells from p53"™:Kras¢’?°, p537™.
Kras®?P;myr-p110a*" and p53"":Kras®'?P;myr-p110a™" mammary
tumors, introduced them into the circulation by tail vein injection
into syngeneic mice, and monitored for the formation of breast
tumors in the lungs, as this method is considered to be a relevant
model for breast cancer lung metastasis.>' 17 days after injection,
mice injected with the p53 /ﬂ;KrasG’ZD;myr—pHOaﬂ/ﬂ breast tumor
cells produced significantly more identifiable tumors in the lungs
(mean 318.6 + 7.4) compared with mice injected either with p53 /A,
Kras®'?° breast tumor cells (mean 6.3+2.6) or p53""Kras®'?P;
myr-p110a”"" breast tumor cells (mean 206.1 + 10.0; Figure 5). This
suggests that the myr-p770a promotes growth of metastatic
tumors in a copy number-dependent manner.

Addition of myr-p110a allele into p53""Kras®’?® double mutants
accelerates tumor initiation in lung and decreases survival

One intentional aspect of the generation of this Cre-inducible
mouse model and the utilization of Ad-cre virus is the ability to
genetically modify different anatomic locations and potentially
cause different tumor types. For the generation of lung cancer, we
utilized injection of Ad-Cre virus into the trachea without surgery.

Both p53""Kras®'? and p53"":Kras®'?P;myr-p110a™*" mice
developed lung tumors with 100% penetrance. Histological
analysis of lung tumors 52 days after intratracheal injection
of Ad-Cre virus (when the first mice had symptoms of lung
tumor growth) revealed high-grade adenocarcinomas that were
largely disseminated throughout the lungs of p53"":Kras®’?;
myr-p110a”"" mice, whereas p53"":Kras®’?? mice developed only
focal, small areas of adenocarcinoma (Figure 6a). Accordingly,
lungs from p53"":Kras®'?P;myr-p110a"*" mice were enlarged and
weighed two to three times more than lungs from either p53™";
Kras®'?® mice or non-tumor-bearing mice, defining more tumor
burdens (Figure 6b). These findings indicate that the addition of
myr-p110a promotes lung tumor development. In contrast with
breast cancer, the addition of one copy of myr-p110a into p53™";
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Figure 5. Combination of myr-p770a with p53"Kras®'?P increases
metastatic potential in a myr-p770a copy number-dependent
manner. The graph showing the number of tumor lesions found
in the lung surface 17 days after intravenous injection of breast
tumor cells with different genotypes into the tail vein of syngeneic
hosts. Error bars are the mean + s.e.m. Two-tailed unpaired Student’s
t-test was used for statistical analysis. ***P < 0.001. In parallel,
Mann-Whitney test (Wilcoxon rank-sum test) was used to reject the
null hypothesis that there is no difference between groups
(**Mann-Whitney U-value=0.0009). Data are representative of
three independent experiments using n=8 per group with
biological and technical replicates. Six- to eight-week-old syngeneic
host mice were randomly assigned to generate similar numbers of
subjects among groups.

Kras®'?P did not change histology of the lung tumors. To further
define the characteristics of the lung tumor development, mice
were allowed to reach end point. The mean survival of p53™7;
Kras®'?P;myr-p110a””" mice was 55+ 1.4 days, whereas the mean
survival of p53"™:Kras®'?? mice was 112 + 1.6 days, (Figure 6¢). This
finding was similar to the breast tumor experiments, in which
survival time was cut in half by addition of one copy of myr-p170a.
Overall, our observations demonstrate that the addition of
constitutively active myr-p7170a allele causes early tumor initiation
in the lung, leading to early death related to lung tumors.

DISCUSSION

Impact of constitutively active PI3K on tumor initiation and
progression

It has recently been shown that cell signaling in many breast
cancers is associated with an activated PI3K/AKT pathway.>?
Notably, by evaluating differences in the p-AKT levels between
mammary tumors harboring zero, one or two copies of myr-p170a
allele combined with either p53™" or p53™:Kras®’?® mutants, our
results proved that the levels of PI3K signaling activation are
significantly increased and strongly correlated with the increased
rate of tumor initiation in a myr-p770a copy number-dependent
manner. These data demonstrated that higher levels of PI3K
activity induced by myr-p770a addition have profound effects on
tumor initiation. In addition, our results showed that the biological
activity of PI3K signaling can be further activated by cooperation
of myr-p710a with Kras®’?® mutation. Our data from the use of
breast tumor cells also determined that the addition of myr-p770a
allele into p53""Kras®’*® mutants facilitates engraftment in the
lungs, as an assay of metastatic potential, in a copy number-
dependent manner. Overall, our findings provide experimental
evidence that PI3K activating mutations associated with increased
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Figure 6. Addition of one copy of myr-p170a into p53"™.Kras®'?P double mutants accelerates tumor development in lung. (a) Hematoxylin and

eosin (H&E) staining of lungs dissected from p53”

:Kras®'?P and p53™"™:Kras'?P;myr-p110a*"" mice 52 days post Ad-Cre virus injection. Pictures

of H&E staining were taken with x40 magnification and are representative. Scale bar represents 1 mm and indicates scale for all images.
(b) Bar graphs describing the weight of lung divided by body weight, 52 days after Ad-Cre virus injection. Error bars are the mean +s.e.m.
Two-tailed unpaired Student’s t-test was used for statistical analysis. ***P < 0.001. (c) Kaplan-Meier survival curve scoring mice showing
symptoms from lung tumor growth defined as any symptoms associated with illness. Log-rank (Mantel-Cox) test was used for statistical
analysis. ***P < 0.001. Data in b and ¢ are representative of three independent experiments using n=5-6 per group.

PI3K signaling activity accelerate the rate of tumor initiation and
increase potential for metastasis.

Although  p53""Kras®?C;myr-p110a*”" mice did not have
increased growth rates of breast tumors as compared with p53"1.
Kras®'™?P mice once tumors had developed, there was a modest
but significant increase in the growth rate of tumors following
initiation in p53"™Kras®™?P mice with two copies of myr-p170a as
compared with p53"":Kras®™?? mice and p53"™Kras®*°mice with
one copy of myr-p770a. One potential interpretation for these
results is that sufficiently high levels of PI3K/AKT signaling
activation also contribute to tumor growth rate.

Impact of dosage of constitutively active PI3K on breast tumor
phenotype

In our study, the addition of myr-p710a allele into p53™“";Kras
or p53™ that resulted in significantly increased PI3K/AKT signaling
activation generated a carcinoma histologic phenotype in a
myr-p110a copy number-dependent manner. The resulting
tumors induced by the addition of myr-p770a allele resembled
those that are commonly seen in the majority of human breast
cancer. This was evident by the morphology of the invasive
carcinoma, as well as by the increased presence of DCIS and
benign epithelial proliferations. Thus, these findings suggest that

3ﬂ/ﬂ; G12D
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levels of PI3K signaling might have a distinct impact on
developing carcinoma phenotypes in humans. As the histological
phenotype of tumors with two copies of myr-p770a was quite
different than tumors with one copy, the increased growth rate
induced by two copies could be attributed to the difference in
tumor type generated by one versus two copies. One limitation of
our study is that we did not define the relation between the
spatial expression levels of myr-p710a or resulting p-AKT levels
and histological features within the specific tumor areas.
Additional studies are warranted to further evaluate this
association between PI3K activity and tumor differentiation.

Value of triple mutant transgenic mice for human cancer model
The value of genetically modified mouse models for cancer
studies lies in the uniformity of the mouse background,
the speed of cancer development enabling practical studies, and
the similarity to human disease both genetically and histopatho-
logically. The inherent heterogeneity of human breast cancer with
variant histopathologic features even within a single tumor®>*
creates an enormous challenge for understanding exact
mechanisms of disease pathology. Our goal was to develop a
breast cancer model that recapitulates the most common
histopathological breast tumors, is temporally inducible and



spatially controlled by the experimenter, and initiates and
develops rapidly to facilitate practical experimentation.

Current mouse breast tumors driven by PI3KCA activating
mutations mimic histopathologic phenotypes observed in human
breast cancers;'’ %> however, these single genetic mutation
mouse models can take a year to develop breast tumors.
Our mouse model that combines one or two copies of
myr-p110a with p53"":Kras®’P can resemble human breast cancer
subtypes, as well as develop tumors early and grow quickly,
leading to a shortened experimental timeline from tumor
initiation to end stage.

Spontaneous additional mutations have been demonstrated to
accumulate along with epigenetic events resulting in an increased
level of genetic complexity in human cancer.>® The mouse model
reported here is unique in that it harbors a PI3KCA (p110a)
oncogene, which is frequently mutated in many human cancers,*¢
along with the tumor suppressor gene p53 deletion and a
well-known oncogene, Kras®’?°. These mutations are repeatedly
altered in human cancers, so they represent relevant genetic
alterations that can be used in developing models to closely
mimic the pathological and biochemical features of cancers. In
addition, this new mouse model is also able to rapidly generate
cancers in other tissues by the application of Cre-recombinase
with adenovirus as demonstrated by lung cancer generation, and
it will be of scientific value to utilize this model for studying other
tumor types. As the mutations require Cre-recombinase for
manifestation, the triple mutation mouse lines can be maintained
easily since breeding is not affected.

In summary, this novel triple mutation model system (1) is an
autochthonous genetic model of human cancer, (2) provides
controlled inducible expression of genetic changes spatially and
temporally, (3) induces tumor subtypes matched histologically to
human breast tumors, and (4) develops tumors very rapidly. The
characteristics outlined should make this new genetically modified
mouse model of significant value for understanding the molecular
mechanisms underlying development of various tumors.

MATERIALS AND METHODS
Generation of experimental transgenic mice

The transgenic Cre-inducible myristoylated-p770a mice on C57BL/6
backgrounds were generated®® and intercrossed with Cre-inducible mice
carrying either only p53 deletion homozygote (p53™", which deletes exon 2
to exon 10 leading to null alleles of p53 upon Cre-mediated excision)®” or
p53"1 and Kras®'?P mutations® (p53"™:Kras®'?P, intercrossed) on C57BL/6
backgrounds. Conditional mutant mice with various genotypes were
obtained and genotyped by PCR. The animal study protocol was reviewed
and approved by the institutional animal care and use committee of Geisel
School of Medicine at Dartmouth.

In vivo intraductal delivery of Adeno-Cre virus into mammary duct

Six- to eight-week-old virgin females were anesthetized by isofluorane/
oxygen inhalation. The calcium phosphate precipitate containing 2.5 x 107
plaque-forming unit of Ad-Cre virus was injected into the teat canal of
fourth inguinal mammary duct using a Hamilton syringe with 33-G
needle?®> Mice were monitored daily for a palpable/visible tumor
formation. Tumor surface area was calculated by the formula: tumor size
(mm?) = length (mm) X width (mm), after caliper measurements.

Hematoxylin and eosin stain

Paraffin-embedded tissues after fixation with 10% buffered formalin
(15740-01, Electron Microscopy Sciences, Hatfield, PA, USA) were sectioned
at 6 um. Deparaffinized sections were stained with hematoxylin and eosin
following the manufacturer's protocol and mounted with Permount
(SP15-100, Fisher Scientific, Grand Island, NY, USA). Images were obtained
on an Olympus BX5.1 or BX4 microscope (Olympus, Waltham, MA, USA),
and captured using Image Pro software (Media Cybernetics, Rockville,
MD, USA).
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Immunohistochemistry

Tumors were paraffin-embedded after fixation in 10% buffered formalin
and sectioned at 6 pum. Sections were immunostained using standard
manufacturer’s protocols at the Dartmouth-Hitchcock Medical Center
Laboratory for Clinical Genomics and Advanced Technology with the
following antibodies: anti-CK5 (ab52635, Abcam, Cambridge, MA, USA),
anti-CK14 (RB-9020, Thermo Scientific, Fremont, CA, USA), anti-CK8
(ab53280, Abcam), anti-estrogen receptor alpha (SC-542, Santa Cruz
Biotechnology, Santa Cruz, CA, USA), anti-PR (RM-9102, Thermo Scientific),
anti-HER2/neu (MA5-15050, Thermo Scientific) and anti-vimentin (ab92547,
Abcam). Images were obtained using an Olympus BX5.1 or BX41
microscope and Image Pro software. Hematoxylin and eosin-stained and
immunostained slides were reviewed by a breast pathologist (JDM).

Protein preparation and western blot

Mammary tumors were lysed in ice-cold lysis buffer containing 50 mM
Tris—HCI (pH 7.4), 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 1 mM NaVO,,
protease inhibitor (11836170001, Roche, Indianapolis, IN, USA) and
phosphatase inhibitor cocktail (P5726, Sigma-Aldrich, St Louis, MO, USA).
An amount of 20 ug proteins were separated on 9% SDS-polyacrylamide
gel electrophoresis gels and transferred to Immobilon-P membranes
(IPVH00010, Millipore, Darmstadt, Germany). According to the standard
protocols, the membranes were immunoblotted with following primary
antibodies: anti-p110a (4249, Cell Signaling Technology, Beverley, CA,
USA), anti-AKT1/2/3 (4691, Cell Signaling Technology), anti-p-AKT1/2/3
Ser473 (4060, Cell Signaling Technology), anti-p85a (sc-1637, Santa Cruz
Biotechnology), anti-PTEN (9559, Cell Signaling Technology), anti-p-PTEN
Ser380/Thr382/Thr383 (sc-101789, Santa Cruz Biotechnology), anti-GFP
(sc-9996, Santa Cruz Biotechnology) and horseradish peroxidase-
conjugated anti-B-Actin  (@ab49900, Abcam). This was followed by
incubation with horseradish peroxidase-conjugated anti-rabbit (sc-2313,
Santa Cruz Biotechnology) or anti-mouse (sc-2060, Santa Cruz
Biotechnology) secondary antibody. Immunoreactive proteins were
detected by chemiluminescence ECL (sc-2048, Santa Cruz Biotechnology),
quantified using Imagelab software (Bio-Rad, Hercules, CA, USA) and
normalized with respect to -actin expression.

Preparation of breast tumor cells and assay of metastatic potential
The cells were derived from culturing large numbers of dissociated breast
tumor cells in complete DMEM over several passages (less than five). The
metastatic potential of breast tumor cells was tested by intravenous
injection of 0.5 x 10° cells into the tail vein of syngeneic mice. The number
of tumor lesions over 1.5 mm in diameter on the lungs was counted
macroscopically after stained with 0.05% 1,9-dimethyl-methylene blue.

in vivo intratracheal delivery of Adeno-Cre virus into the lung
Six- to eight-week-old mice were anesthetized by intraperitoneal injection
of avertin (0.3 mg/g body weight). The Exel Safelet IV catheter was inserted
into the mouth and slid into the trachea, and the calcium phosphate
precipitate containing 2.5x 107 plaque-forming unit of Ad-Cre virus was
injected through the opening of the catheter using a 0.5-ml syringe. Mice
were monitored for clinical symptoms of poor health, such as lethargy,
panting/respiratory distress and/or decreased mobility.

Mouse embryonic fibroblasts (MEFs) preparation
MEFs were derived and cultured as previously described.”

Ad-Cre virus infection of MEFs

60-70% confluent MEFs at passage number 2-3 were infected at
multiplicity of infection 100:1 (virus:cell) with adenovirus-expressing
Cre-recombinase (Ad5CMVCre, University of lowa, Gene Transfer Vector
Core) in DMEM supplemented with 2% fetal bovine serum for 6 h. The
infection efficiency was confirmed by flow cytometry of eGFP-positive cells
to ensure that >85% cells expressed the myr-p770a.

Anchorage-independent cell growth assay in vitro

A total of 2000 pooled transfected MEFs were resuspended in a top layer of
0.35% agar-containing DMEM and plated onto a bottom layer of 0.5%
agar-containing DMEM in 12-well plates in triplicate. After 30 days,
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the colonies were stained with 0.005% crystal violet and counted
macroscopically. Minimum diameter of the colonies was 50 um.

In vivo tumor formation assay
Total 1x10° pooled transfected MEFs were injected intradermally into
six- to eight-week-old immunocompromised NOD/scid IL2 gamma chain
KO (NSG, NOD.Cg-Prkdc™ I12rg™"/'/SzJ) mice. Mice were monitored daily
to detect a palpable/visible tumor.

Statistical analysis

Two-tailed unpaired Student’s t-test and the Mann-Whitney test were used
for comparison between experimental groups analyzed for anchorage-
independent cell growth assay, metastatic potential assay and
western blots. For experiments involving a comparison between three or
more distinct groups, one-way analysis of variance test was used.
Statistics were calculated as non-parametric Log-rank (Mantel-Cox)
analysis of Kaplan-Meier for censored survival and tumor-free data. Data
analysis was performed using Prism 5.0 software (GraphPad software,
La Jolla, CA, USA). Graphs in figures denoted statistical significance
of *P<0.05, **P<0.01, and ***P<0.001. P>0.05 was considered
non-significant (ns).
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