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Competitive dynamics between criminals and law
enforcement explains the super-linear scaling of
crime in cities
Soumya Banerjee1,2,3,4,5, Pascal Van Hentenryck6 and Manuel Cebrian6

ABSTRACT While cities have been the engine for innovation and growth for many mil-

lennia, they have also endured disproportionately more crime than smaller cities. Similarly to

other urban sociological quantities, such as income, gross domestic product (GDP) and

number of granted patents, it has been observed that crime scales super-linearly with city

size. The default assumption is that super-linear scaling of crime, like other urban attributes,

derives from agglomerative effects (that is, increasing returns from potentially more pro-

ductive connections among criminals). However, crime initiation appears to be generated

linearly with the population of a city, and the number of law enforcement officials scales

sublinearly with city population. We hypothesize that the observed scaling exponent for net

crime in a city is the result of competing dynamics between criminals and law enforcement,

each with different scaling exponents, and where criminals win in the numbers game. We

propose a simple dynamical model able to accommodate these empirical observations, as

well as the potential multiple scaling regimes emerging from the competitive dynamics

between crime and law enforcement. Our model is also general enough to be able to correctly

account for crime in universities, where university crime does not scale super-linearly, but

linearly with enrolment size.
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Introduction

C ities triumph as super-linear hubs of innovation, produc-
tivity and energy efficiency (Bettencourt et al., 2007; Batty,
2008; Bettencourt and West, 2010; Glaeser, 2011).

However, as cities grow in size, crime rates also increase super-
linearly (Glaeser and Sacerdote, 1996; Cullen and Levitt, 1999;
Gould et al., 2002), confirming the stereotype that per capita rates
of crime are much higher in a large, hectic city like New York
than in smaller, more peaceful Santa Fe.

Urban data obtained at multiple levels of resolutions, ranging
from infrastructure to social networks, has prompted mathema-
tical models that explain the positive agglomerative effects of
cities: larger cities essentially have human networks that are
super-linearly more connected, and information and ideas flow
faster and wider across the population, boosting innovation
(Schläpfer et al., 2014; Bettencourt, 2013; Pan et al., 2013).
However, the super-linear scaling relationship observed for crime
has not yet been given a satisfactory generative mechanism. Two
main hurdles may be preventing theorists from coming up with
successful explanations.

First, it is unclear that criminals would be able to exploit these
enhanced inter-personal urban networks for increased collabora-
tions in larger cities. Crime is a strongly local phenomenon
(Keizer et al., 2008; Short et al., 2010; Salesses et al., 2013); the
spreading of crime and disorder has strong geographical decay,
limiting the benefits of a large city (Keizer et al., 2008); and most
criminals are not creative professionals, and hence their capacity
to mature and specialize in information-rich environments is
bounded (Tumminello et al., 2013). Second, if a theory can be
developed to explain the scaling of crime, it must incorporate the
competitive dynamics between criminals and law enforcement.
Crime initiation/perpetration and police intervention while crime
is in progress, happen on approximately the same timescale and
therefore crime can be in some cases stopped before being
perpetrated. Criminals are indeed involved in an arms race with
law enforcement (Baudains et al., 2013a, b; Davies et al., 2013). A
higher patrolling efficiency or higher numbers of police may
reduce the number of crimes, not necessarily by reducing the
number of individuals likely to commit a crime, but by ultimately
preventing crime from being successfully completed.

In this work, we report that the main ingredients affecting net
crime, namely crime and law enforcement, display notably
different scaling relationships with human agglomeration size. On
the one hand, initiation of crime scales linearly with city size,
whereas the size of the police force scales sublinearly. We observe
that crime in cities exhibits a super-linear scaling with city
population. We hypothesize that this is due to the fact that
criminals and police display different scaling relationships.

Crime has been modelled using mathematical models like
ordinary differential equation models (McMillon et al., 2014),
partial differential equation models (Baudains et al., 2013c;
D’Orsogna and Perc, 2014) and spatial and agent-based models
(Short et al., 2010; Baudains et al., 2013c; Davies et al., 2013; Perc
et al., 2013). Our approach is to use differential equation models
that capture the competitive dynamics between law enforcement
and criminals and apply them to large-scale data on crime in
cities worldwide. For more we refer readers to the recent reviews
on the modelling of crime using different mathematical
techniques (D’Orsogna and Perc 2014; Helbing et al., 2014).

We model crime mathematically as an arms race between
criminals and police. Our model predicts that the super-linear
scaling of crime in cities is a direct consequence of the
mathematical model and the fact that the number of police
scales sublinearly with city size. On the other hand, we observe
that crimes on university campuses exhibit a different, sublinear
relationship with university size. Net crime initiation is sublinear

in campus enrolment size, with also a sublinear scaling of on-
campus police. This prompts us to consider whether super-linear
scaling of crime is in fact a universal feature of human
agglomeration, or just one of the multiple scaling regimes
emerging from the interaction between criminals and law
enforcement. A successful theory for the scaling of crime in
cities should be able to separately model both the endogenous
rates of crime generation, as well as the size and efficacy of law
enforcement, tying them together in a coherent mathematical
model able to reproduce empirical data. A more mechanistic
understanding of how crime scales with human agglomerations
may help inform public policy, law enforcement resource
allocation, and planning decisions for urban settings and other
large-scale human agglomerations.

Methods
Data sources. The datasets that were analysed have been made publicly available
in the Dataverse repository (Banerjee et al., 2015). These datasets were derived
from detailed data on crime occurrences from publicly available datasets both in
the UCI Machine Learning Repository (United States Department of Commerce,
Bureau of the Census, Census of Population and Housing 1990 United States:
Summary Tape File 1a & 3a (Computer Files), 1990; United States Department of
Justice, Bureau of Justice Statistics, Law Enforcement Management and
Administrative Statistics (Computer File), 1992; Redmond and Baveja, 2002;
Lichman, 2013) and the FBI Uniform Crime Report (United States Department of
Justice, Federal Bureau of Investigation, Crime in the United States (Computer
File), 1995). The datasets contain the number of crimes committed in the United
States, number of police in US cities, city population size, number of requests to
police, police budget and so on. We note the caveat that the UCI dataset combines
data from two different times: sociological data is from the 1990 Census and crime
data is from the year 1995. Statistical analysis was carried out with programs
written in Matlab (MATLAB and Statistics Toolbox Release, 2012).

Model
We propose a non-linear dynamical model to simulate crime in
cities. The model simulates the arms race between criminals and
law enforcement. Let us assume that out of a population of N
individuals in a city of area A, there are PC criminals, PNC non-
criminals or ordinary citizens, and PLE law enforcement officials.

The number of criminals per unit area is PC/A, and let us
denote this as DC (density of criminals). Similarly, the number of
ordinary (non-criminals) people per unit area is PNC/A, and let us
denote this as DNC (density of non-criminals). Finally, the
number of law enforcement officials per unit area is PLE/A and let
this be denoted by DLE (density of law enforcement officers). Let
the density of crimes be C and the total number of crimes be
C×A.

We assume that the number (and hence the density) of normal
people (non-criminals), criminals and law enforcement does not
change for the time period we are interested in. This assumption
can be expected to hold in general unless a city is undergoing
major social upheavals, as for example the recent London riots of
2011 (Davies et al., 2013), Arab Spring revolutions of 2011
through 2013, and the Stockholm riots of 2013. Our equations
can be extended to simulate a situation where the number of
police increases rapidly over a few days in response to a sudden
increase in the number of criminals (see Supplementary
Information: Model Extensions). The model is additionally
justifiable on the grounds that our model is tested against data
that was collected over one particular year, and changes in police
numbers and population are subsequently ignored in the
discussion that follows. We note the caveat that not all non-
criminals may be completely innocent.

Similar to previous models (McMillon et al., 2014), we assume
that crimes are generated by the interaction of criminals and non-
criminals, on which criminals perform a criminal action, with rate
constant α. Crimes are prevented by law enforcement at a rate
proportional to the density of crimes and law enforcement with
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rate constant β. The model is shown below, and is diagramma-
tically represented in Fig. 1:

dC
dt

¼ a � DC � DNC � b � C � DLE ð1Þ
The model produces an evolution of the density of crime over

time (Supplementary Fig. 1).
We again focus on the steady-state and peak values of crime.
The density of crimes committed at steady-state and at the

peak of crimes are given by the following equation (derived by
setting equation (1) to 0; the derivative of crimes committed will
be zero at steady-state and at the time when crimes peak,
reflecting the notion that the action of police and criminals
balance each other).

CSS ¼ a � DC � DNC

b � DLE
ð2Þ

Since we are interested in the actual number of crimes in a city,
after converting from densities to numbers we get:

CrimeSS ¼ a
b
´
Ncriminals � Nnon�criminals

Npolice
ð3Þ

where Ncriminals is the number of criminals, Nnon− criminals is the
number of non-criminals, and Npolice is the number of law
enforcement officials in a city.

Since we are also interested in how the number of crimes scale
with the population of a city (N), let us assume that Nnormal∝N,
NcriminalspNxcrime , and NpolicepNypolice (where xcrime and ypolice are
the scaling exponents for how the number of criminals and the
number of police scales with population size, respectively). This
gives us the following scaling relation for the number of crimes in

a city of population N:

CrimeSSpN1þ xcrime�ypoliceð Þ ð4Þ
The scaling equation (equation (4)) gives us three possibilities

for how crime can scale.

1. xcrime4ypolice. If the scaling exponent for criminals is greater
than that of law enforcement, this will lead to super-linear
scaling of crime in a city: Crimess∝Nexponent where exponent
is greater than 1.

2. xcrime= ypolice. If the scaling exponent for criminals is equal
that of law enforcement, this will lead to linear scaling of crime
in a city: Crimess∝Nexponent where exponent is equal to 1.

3. xcrimeoypolice. If the scaling exponent for criminals is less than
that of law enforcement, this will lead to sublinear scaling of
crime in a city: Crimess∝Nexponent where exponent is less
than 1.

Results
Scaling of crime in cities. Our central result, equation (4),
predicts that net crime should scale super-linearly whenever
xcrime4ypolice. The scaling relationships and relevant statistics are
summarized in Table 1. Empirically we observe that the net
number of crimes in a city scales super-linearly with the size of
the city (total population of a city) (Fig. 2, ordinary least squares
[OLS] slope= 1.26, 95% confidence interval on slope= [1.22,
1.30], r2= 0.65, P-value= 1e-100).

Hence crime scales super-linearly with city size. In addition
we tested super-linearity using another method used to test
allometric scaling (Warton et al., 2006) using the SMATR
package in R (Warton et al., 2012). This analysis also con-
firmed super-linearity (semi-major axis regression slope= 1.56,

Figure 1 | An interaction diagram showing the arms race between

criminals and police.
Crime is the product of the interaction between criminals and normal people
(non-criminals). Police try to stop crimes, arresting its further spread.

Table 1 | Scaling relations for crime with relevant statistics

log10 (Dependent variable)= Scaling exponent*log10 (Independent variable)+intercept using ordinary least squares regression

Dependent variable Independent variable Scaling exponent (mean and 95% CI) r2 P-value

Total crimes in cities City population 1.26 [1.22, 1.30] 0.65 1e-100
Total requests for police City population 0.96 [0.88, 1.05] 0.60 1e-70
Sworn police number City population 0.82 [0.77, 0.88] 0.69 5e-88
Police budget in cities City population 0.88 [0.81, 0.95] 0.65 7e-80
Total crimes in universities Enrolment size 0.82 [0.76, 0.88] 0.53 3e-98
Number of police in universities Enrolment size 0.56 [0.50, 0.61] 0.37 2e-66
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Figure 2 | Super-linear scaling of crime in cities.

Note: Plot showing total number of crimes versus city size (population)
from empirical data. OLS slope= 1.26, r2=0.65, P-value= 1e-100.
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95% confidence interval on slope= [1.52, 1.60], r2= 0.65,
P-value= 2e-16).

However, we observe that crime is generated at numbers which
scale linearly with the population of a city (Fig. 3, OLS slope=0.96,
95% confidence interval on slope= [0.88, 1.05], r2=0.60, P-
value=1e-70). The number of police officers scales sublinearly with
city size (Fig. 4, OLS slope=0.82, 95% confidence interval on
slope= [0.77, 0.88], r2= 0.69, P-value=5e-88).

Budget for police also increases sublinearly with city popula-
tion (Fig. 5, OLS slope= 0.88, 95% confidence interval on
slope= [0.81, 0.95], r2= 0.65). Hence the relationship of the
number of requests for police is linear, whereas the size of the
police force is sublinear with city size, resulting in the observed
super-linear scaling of net crime.

We also looked at the average overtime worked by police—to
check if an increased police effort could make up for smaller
police number—and the relationship with city size is barely
significant statistically (Supplementary Fig. 2, OLS slope= 0.11,
r2= 0.01, P-value= 0.04).

Scaling of crime in universities. We also looked at a different
dataset (FBI Uniform Crime Report) that reports number of
crimes and police size on US university campuses. The scaling
relationships and relevant statistics are again summarized in
Table 1. We observed that net crime scaled sublinearly with size
of the university (defined as number of students enroled) (Fig. 6,
OLS slope = 0.82, 95% confidence interval on slope= [0.76, 0.88],
r2= 0.53, P-value= 3e-98). Also the number of police on campus
scaled sublinearly with university size (Fig. 7, OLS slope= 0.56,
95% confidence interval on slope= [0.50, 0.61], r2= 0.37,
P-value= 2e-66).

Our model predicts that the number of police requests in
universities must also have been sublinear (equation (4)), instead
of the linear relationship observed in cities—though we have no
data available to verify this prediction.

Discussion
Cities have been around for many millennia, and have been an
integral part of shaping our civilization. However, cities have also
always been associated with crime.

Here we examine how the number of crimes in cities scales with
city population, and present a descriptive mathematical framework
that provides an explanation for it. It has been previously shown that
crime scales super-linearly with city size (Bettencourt et al., 2007)
(that is, larger cities have disproportionately more crime than
smaller cities). It has been assumed that the super-linear scaling of
crime is due to agglomerative processes. Such an explanation has
also been given for scaling of GDP, patents and other outputs of
super-creative professions (Bettencourt et al., 2007; Pan et al., 2013).
Scaling of GDP and patents stems presumably from the fact that
they are created by creative professionals who benefit from living in
larger cities by the disproportionately higher number of innovative
collaborations and connections larger cities provide (Youn et al.,
2015). However, most criminals are not creative professionals, and
hence they may not benefit from increasing returns to living in
larger cities.

Our modelling and empirical data suggest that crime in cities
scales super-linearly (Fig. 2) because of number of police scaling
sublinearly with city size (Fig. 4) and crimes being generated
linearly with city size (Fig. 3). Our models also make quantitative
predictions of how crime should scale with city size and the
estimates are in agreement with observed data. Our models
suggest that the super-linear scaling of crime in cities is a result of
the interplay between generation of crime and police numbers.
This is supported by the fact that the number of requests for

police support scales linearly with city size (Fig. 3, OLS
slope= 0.96, Table 1). These are requests for police during or
immediately after a crime. Our data therefore suggests that crime
is generated isometrically (linearly) with city size. However, the
net crime (after considering police numbers and police response)
scales super-linearly (Fig. 2, OLS slope= 1.26, r2= 0.65).

Our mathematical model also correctly explains crime in a
different context: in universities. Our data shows that net crime in
universities scales sublinearly with the size of the university (Fig.
6). Since the number of police in universities scales sublinearly
also (Fig. 7), we predict that the actual number of crimes
generated is much lower. Our model (equation (4)) predicts that
the number of police requests in universities must also have been
sublinear, instead of the linear relationship observed in cities.
Hence universities may not be attractive to criminals. We
hypothesize that this is due to the fact that universities have
intellectual capital and not financial capital and are less of an
incentive for criminals than for example retail outlets (Davies
et al., 2013).
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Figure 3 | Linear scaling of total requests for police in cities.

Note: Plot showing total requests for police versus city size (population)
from empirical data. OLS slope=0.96, r2=0.60, P-value= 1e-70.
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Figure 4 | Sublinear scaling of sworn police in cities.
Note: Plot showing sworn police number versus city size (population)
from empirical data. OLS slope=0.82, r2=0.69, P-value= 5e-88.
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Figure 5 | Sublinear scaling of police budget in cities.

Note: Plot showing police budget versus city size (population) from
empirical data. OLS slope=0.88, r2=0.65, P-value= 7e-80.
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The present work points to deficiencies in police numbers: police
numbers do not scale linearly with the population of a city (Fig. 4)
and police budget scales sublinearly with city population (Fig. 5)
(that is, police budget per capita is lower in larger cities). This raises
the intriguing possibility that it may be possible to reduce crime in
larger cities by allocating more police and crime fighting resources
(by allocating more towards police budget). Our models suggest that
if police numbers did scale linearly with city size, crimes could be
reduced and net crimes would also scale linearly (and not super-
linearly) with the size of the city (setting xcrime= 1 and ypolice=1 in
equation (4)). We do not suggest, however that the mere presence of
additional police or more efficient policing may serve to revert crime
to a linear scaling regime, since attacks on criminal networks may in
some cases strengthen them further (Duijn et al., 2014). Never-
theless, a judicious strategy that combines additional police with
effective patrolling and crime prevention techniques may reduce
crime in large cities.

Our models can also predict how net crime should scale if
requests for police and police numbers scale differently than in
the dataset shown here (by substituting the appropriate scaling
relationships for xcrime and ypolice in equation (4)). This could be
useful in analysing other specialized forms of crime like cyber
crime, organized crime, crime in armies and online vandalism
(for example, misinformation in Wikipedia and so on).

The present work also suggests that criminals (for the crimes
we investigate) and police are not able to take advantage of
increasing returns (that is, criminals and police do not benefit
from being in larger cities and may not be able to exploit the
additional information and collaboration rich environments that
they provide). This is in stark contrast to innovative and
economic enterprise where people benefit disproportionately

from living in larger cities that afford more avenues for
collaboration (Bettencourt et al., 2007; Pan et al., 2013).

Our work raises important questions about crime itself: why do
the number of crimes generated scale linearly with the population
of a city and not say super-linearly? If the most important
attractor for crime is money, and GDP itself scales super-linearly
with size of the city (Bettencourt et al., 2007), crimes committed
in the city should also scale super-linearly. It is possible that
crimes are after all committed against individuals (of some
financial value) and the total number of crimes scales only as the
number of people available in the city (population or size of the
city). Another likely cause is that this reflects fundamental
constraints in how criminals operate: a single criminal has only so
much cognitive and physical capability and can do a limited
amount of damage in a specified amount of time. Unless
criminals are able to exploit collaborations with other criminals,
the intrinsic rate of generation of crime will always be isometric
(linear) with the population of a city.

Cities are akin to biological organisms (Bettencourt et al.,
2007); crime is analogous to a pathogenic infection and police
response to it is similar to an immune response. Such an immune
inspired theory or immunological theory of crime in cities has
several advantages:

1. Previous work has shown advantages of looking at complex
systems from the lens of another complex dynamical system:
the immune system (Banerjee and Moses, 2009; Banerjee and
Moses, 2010a, b; Banerjee et al., 2011; Moses and Banerjee,
2011; Banerjee, 2009, 2013). One of the advantages is that the
observed scaling of a quantity of interest is the result of the
complex nonlinear interplay between two different competing
systems (pathogen and the immune system or criminals and
police). This approach has also been used successfully to derive
results for how the immune response against pathogens should
scale with the size of the infected animal (Banerjee and Moses,
2009; Banerjee and Moses, 2010b; Banerjee et al., 2011;
Banerjee, 2013).

2. Previous work on using the immune system as inspiration
has also led to insights into design of engineered distributed
systems of computers and mobile robots (Banerjee and
Moses, 2010a, b; Moses and Banerjee, 2011; Banerjee, 2013).
We hope that the present work would lay the foundation for
an immunological theory of crime in cities. Such a theory
may give insights into how crime, social unrest and civil
disorder (analogous to pathogenic infection) develops in
cities, a theory of attack against people or migrants
considered foreign to the native population, civil wars
where fighting develops within cities and fighting against
intruders trying to invade cities. It could give insights into
how some cities are able to defend themselves against
intruders while still remaining flexible enough to incorpo-
rate new people with various skillsets that deeply enrich it.
Such insights may help us design better and more efficient
cities.

3. Finally, previous work using the immune system as an
inspiration has shown the optimal way to design and place
structures similar to lymph nodes (used by the biological
immune system) that facilitate detection of adverse events and
response against them (Banerjee and Moses, 2010a, b; Moses
and Banerjee, 2011; Banerjee, 2013). In an immunological
theory of cities, the analogue of lymph nodes would be police
stations and patrolling police would be circulating lympho-
cytes (Banerjee et al., 2011). In future work we plan to extend
the theory presented here by making theoretical predictions of
optimal placement and size of police stations, and optimal
police trafficking strategies.
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Figure 6 | Sublinear scaling of total crimes in universities.
Note: Plot showing net crimes in universities versus university size
(enrolment size) from empirical data. OLS slope=0.82, r2=0.53.
(P-value= 3e-98).
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Figure 7 | Sublinear scaling of police in universities.
Note: Plot showing police in universities versus university size
(enrolment size) from empirical data. OLS slope=0.56, r2=0.37.
(P-value= 2e-66).
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The biological immune system exhibits scale-invariance of
detection and response (Banerjee and Moses, 2010a, b; Banerjee,
2013) (that is, the time taken by the immune system to detect a
pathogen and neutralize it does not scale with the size of the
organism). Our work suggests that if cities allocated more
(linearly) resources towards police, then crime would scale
linearly with the size of the city and hence the density of crime
would be scale-invariant (from equation (4)). Organisms also
allocate energy to the immune system proportional (linear) to
their body size. This linear allocation of energy to the immune
system is one reason (among other factors) that helps the
immune system achieve scale-invariance (Banerjee and Moses,
2010a, b; Banerjee, 2013) and is likely the result of evolution, and
the importance of the immune system to the survival of
organisms.

Organisms may have evolved to minimize host immune
response times and host tissue damage to pathogens (Banerjee
and Moses, 2010a, b; Banerjee, 2013). This raises an intriguing
question: why have cities not evolved to minimize crime? There
are two potential explanations:

1. Cities may not have been subjected to the same evolutionary
pressures, or for as long a time, as organisms. In addi-
tion, moving out of cities is costly, and that may keep cities
stable.

2. Crime may not affect the attractiveness of a city as long as it is
below some perceived threshold (that is, there are more
important factors like economic opportunity that may over-
whelm factors like crime when it comes to making a decision
to move to a city).

In future work we plan to extend our approach to: (a) cyber
crimes, where it is difficult to quantify size because of its
decentralized nature, and (b) organized crime, where interaction
and co-operation between criminals can lead to different
dynamics. The present approach of modelling the competition
and dynamics between two opposing forces can also be extended
to model human conflicts and would be consistent with existing
work demonstrating that conflict dynamics are best captured by
co-evolution between aggressors (Johnson et al., 2011). Finally,
our models ignore space and assume that a city composed of
criminals, non-criminals and law enforcement is homogeneously
well-mixed. However, space is very important in determining
dynamics of crime (Short et al., 2010; Baudains et al., 2013c;
Davies et al., 2013). Future work will couple spatially explicit
models with dynamics between criminals, non-criminals and law
enforcement.

In summary, our work suggests that super-linear crime scaling
does not imply that crime generation is super-linear. The present
work highlights the importance of incorporating non-linear
dynamics while simulating complex systems like cities. Previous
work has used a similar approach to study immune systems
(Banerjee and Moses, 2010b; Banerjee, 2013).

Cities have been around for many millennia, have been an
integral part of shaping the growth of civilizations and have
contributed immensely to our success as a dominant and
cognitive species. However, crime has been synonymous with
cities since their inception. A deeper understanding of crime is
imperative to the habitability of our planet, sustainable living in
cities and our future success. We hope that this work will lay the
foundation for a general and ultimately predictive theory for
crime in cities.

Note
1 Supplementary Information accompanies this paper at http://www.palgrave-journals
.com/palcomms
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