Abstract
THE unlikelihood of determining the geometry of coordinated dioxygen in oxyhaemoglobin and oxymyoglobin by X-ray crystallographic techniques has prompted great interest in simpler model systems1–4 and a great deal of theoretical speculation5–9. The mode of coordination of dioxygen and the related peroxo (O22−) and superoxo (O2−) ligands depends on the metal atom in the model complex. Platinum metal tertiaryphosphine dioxygen1,2 and chromium molybdenum and titanium peroxo-complexes10–12 have the dioxygen moiety symmetrically (π) bonded (Fig. la) and cobalt (III) amine and Schiff base peroxo and superoxo-complexes, which are usually binuclear, have the less symmetrical geometry3,13,14 shown in Fig. \b. The absence of a bonding scheme which explains these different geometries has severely limited their evaluation as model systems. (The diamagnetism of oxyhaemoglobin precludes a linear Fe-O-O geometry7.)
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Dioxygen at Biomimetic Single Metal-Atom Sites: Stabilization or Activation? The Case of CoTPyP/Au(111)
Topics in Catalysis Open Access 22 July 2020
Access options
References
Ibers, J. A., and LaPlaca, S., Science, 145, 920 (1964).
McGinnety, J. A., Payne, N. C., and Ibers, J. A., J. Amer. Chem. Soc., 91, 6301 (1969).
Hoffman, B. M., Diemente, D. L., and Basolo, F., J. Amer. Chem. Soc., 92, 61 (1970).
Floriani, C., and Calderazzo, F., J. Chem. Soc., A, 946 (1969).
Pauling, L., and Coryell, C. D., Proc. US Nat. Acad. Sci., 22, 210 (1936).
Pauling, L., Nature, 203, 182 (1964).
Griffith, J. S., Proc. Roy. Soc., A, 235, 23 (1956).
Weis, J. J., Nature, 202, 83 (1964).
Hoard, J. L., Structural Chemistry and Molecular Biology (edit. by Rich, A., and Davidson, N.), 573 Freeman, San Francisco, 1968).
Stomberg, H., Arkiv. Kemi, 24, 283 (1965).
Larking, I., and Stomberg, R., Acta Chem. Scand., 24, 2043 (1970).
Schwarzenbach, D., Inorg. Chem., 9, 2391 (1970).
Schaefer, W. P., and Marsh, R. E., Inorg. Chem., 8, 291 (1969).
Marsh, R. E., and Schaefer, W. P., Acta Cryst., B, 24, 246 (1968).
Snyder, D. A., and Weaver, D. L., Chem. Commun., 1425 (1969).
Hodgson, D. J., Payne, N. C., McGinnety, J. A., Pearson, R. G., and Ibers, J. A., J. Amer. Chem. Soc., 90, 4486 (1969).
Mingos, D. M. P., and Ibers, J. A., Inorg. Chem. (in the press).
Pearson, R. G., J. Chem. Educ., 45, 581 (1968).
Mason, R., Nature, 217, 543 (1968).
Mingos, D. M. P., Nature, 229, 193 (1971).
Pearson, R. G., J. Amer. Chem. Soc., 91, 4947 (1969).
Kashiwagi, T., Yasouka, N., Kasai, N., Kakudo, M., Takahashi, S., and Hagihara, N., Chem. Commun., 743 (1969).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
MINGOS, D. Geometries of Dioxygen (O2), Superoxo (O2−) and Peroxo (O22−) Complexes. Nature Physical Science 230, 154–156 (1971). https://doi.org/10.1038/physci230154a0
Received:
Issue date:
DOI: https://doi.org/10.1038/physci230154a0
This article is cited by
-
Dioxygen at Biomimetic Single Metal-Atom Sites: Stabilization or Activation? The Case of CoTPyP/Au(111)
Topics in Catalysis (2020)