Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Chemical Evidence for Exsolution in a Labradorite

Abstract

The plagioclase feldspars are important constituents and genetic indicators in most metamorphic and plutonic rocks. Complete solid solution exists between the end members, albite (Ab), NaAlSi3O8 and anorthite (An), CaAl2SiO8 at high temperatures, but considerable evidence has been accumulated for the presence of limited solid solubility at the low temperatures representative of near-equilibrium conditions in plutonic and metamorphic rocks. Electron microscopic investigations of specimens of various bulk compositions show lamellar textures a few tens to hundreds of nm in thickness indicative of exsolution (phase separation) into two phases. In addition, doubled X-ray and electron diffraction spots have been obtained from samples in the composition ranges An2-An15 (known as peristerites)1−5 and An67–An83 (the bytownites)6–9. The characteristic faint blue iridescence or “schiller” displayed by peristerites was shown to be the result of Bragg diffraction of light from the boundaries between the two phases10. Similar but more intense colours covering the whole visible spectrum are produced by labradorites (An42-An58) from coarsely crystalline anorthosites11, and this has led to speculations about the existence of “reflecting planes”12 and hence the possibility of a solubility gap13 similar to that which occurs in the peristerite and bytownite composition fields.

This is a preview of subscription content, access via your institution

Access options

References

  1. Laves, F., J. Geol., 62, 409 (1954).

    Article  ADS  Google Scholar 

  2. Ribbe, P. H., Am. Mineral., 45, 626 (1960).

    Google Scholar 

  3. Brown, W. L., Z. Kristallogr., 113, 297 (1960).

    Article  Google Scholar 

  4. Nissen, H.-U., Proc. sixth int. Congr. Electron Microscopy, Kyoto, 1, 591 (1966).

    Google Scholar 

  5. Korekawa, M., Nissen, H.-U., and Philipp, D., Z. Kristallogr., 131, 418 (1970).

    Article  Google Scholar 

  6. Huttenlocker, H., Schweiz, miner, petrogr. Mitt., 22, 326 (1942).

    Google Scholar 

  7. Jäger, E., and Huttenlocker, H., Schweiz, miner.petrogr. Mitt., 35, 199 (1955).

    Google Scholar 

  8. Nissen, H.-U., Schweiz, miner, petrogr. Mitt., 48, 53 (1968).

    Google Scholar 

  9. Nissen, H.-U., Feldspar Researches, Proc. NATO Advanced Study Institute, Manchester, July 1972 (in the press).

  10. Fleet, S. G., and Ribbe, P. H., Mineral. Mag., 35, 165 (1965).

    Google Scholar 

  11. Rayleigh, Lord, Proc. R. Soc. London, A103, 34 (1923).

    Article  ADS  Google Scholar 

  12. Bøggild, G. B., K. danske Vidensk. Selsk., Math.-fys. Medd., 6, 1 (1924).

    Google Scholar 

  13. Laves, F., Estr. Rend. Soc. Min. Rai., 15, 37 (1960).

    Google Scholar 

  14. Baier, R., and Pense, J., Naturwissenschaften, 44, 110 (1957).

    ADS  Google Scholar 

  15. Laves, F., Nissen, H.-U., and Bollmann, W., Naturwissenschaften, 52, 427 (1965).

    Article  Google Scholar 

  16. Bolton, H. C., Bursill, L. A., McLaren, A. C., and Turner, R. G., Phys. Stat. Sol., 18, 221 (1966).

    Article  ADS  Google Scholar 

  17. Nissen, H.-U., Eggmann, H., and Laves, F., Schweiz, miner. petrogr. Mitt., 47, 289 (1967).

    Google Scholar 

  18. Nissen, H.-U., Schweiz, miner, petrogr. Mitt., 49, 491 (1969).

    Google Scholar 

  19. Nissen, H.-U., and Bollmann, W., Proc. fourth Eur. Reg. Conf. Electron Microscopy, Rome, 321 (1968).

  20. Korekawa, M., and Jagodzinski, H., Schweiz, miner, petrogr. Mitt., 47, 269 (1967).

    Google Scholar 

  21. McConnell, J. D. C., Feldspar Researches, Proc. NATO Advanced Study Institute, Manchester, July 1972 (in the press).

  22. Nissen, H.-U., ibid., abstract.

  23. Cahn, J. W., Trans. Met. Soc. AIME, 242, 166 (1968).

    Google Scholar 

  24. Heuer, A. H., Lally, J. S., Christie, J. M., and Radcliffe, S. W., Phil. Mag., 26, 465 (1972).

    Article  ADS  Google Scholar 

  25. Cooke, C. J., and Duncumb, P., Proc. fifth int. Conf. X-ray Optics and Microanalysis, Tübingen (Springer-Verlag, Berlin, 1968.

  26. Lorimer, G. W., Nazir, M. J., Nicholson, R. B., Nuttall, K., Ward, D. E., and Webb, J. R., Proc. fifth int. Mat. Symp., Berkeley, 232 (University of California Press, 1972).

  27. Cliff, G., and Lorimer, G. W., Proc. fifth Eur. Congr. Electron Microscopy, Manchester, 140 (Institute of Physics, 1972).

  28. Lorimer, G. W., and Champness, P. E., Am. Miner., 58, 243 (1973).

    Google Scholar 

  29. McLaren, A. C., and Phakey, P. P., Aust. J. Phys., 18, 135 (1965).

    Article  ADS  Google Scholar 

  30. Long, J. V. P., in Physical Methods in Determinative Mineralogy (edit, by Zussman, J.), 215 (Academic Press, 1967).

  31. McConnell, J. D. C., Phil. Mag., 20, 1195 (1969).

    Article  ADS  Google Scholar 

  32. Lorimer, G. W., and Champness, P. E., Proc. third int. HVEM Conf. (Academic Press, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

NISSEN, HU., CHAMPNESS, P., CLIFF, G. et al. Chemical Evidence for Exsolution in a Labradorite. Nature Physical Science 245, 135–137 (1973). https://doi.org/10.1038/physci245135a0

Download citation

  • Received:

  • Revised:

  • Issue date:

  • DOI: https://doi.org/10.1038/physci245135a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing