Abstract
The pervaporation of water and ethanol at 25°C was examined on as-cast and annealed membranes of (AB)n-type multiblock copolymers of bisphenol-A polycarbonate (PC) and polyoxyethylene (POE) of varying composition and block length. The equilibrium degree of swelling, qe (in g liquid/100 g dry membrane), for water decreases rapidly with increasing PC content of the samples, while that for ethanol remains nearly constant. The pervaporation rate P of water also decreases with increasing PC content, while that of ethanol is high for samples with 30 and 75 wt% PC content, but low for those with 50 wt% PC content. Swelling and pervaporation of as-cast specimens of these block copolymers appear to be complicated by the incomplete microphase separation between the components. Nevertheless, except for a few cases, annealing the membranes at 60°C appears to cause their microdomain structures to be more like those of equilibrium morphology so that their pervaporation behavior becomes like that expected from simple additivity with respect to the volume fraction of the phases. Our results suggest that the pervaporation of water through these copolymers is governed essentially by solubility, but that of ethanol, by diffusivity.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
See, for example, S. Sourirajan, “Reverse Osmosis,” Academic Press, New York, N. Y., 1970.
S. Sourirajan, Presented at the 26th International Congress of Pure and Applied Chemistry, Tokyo, 1977; J. Appl. Chem., 50, 593 (1978).
S. Hwang and K. Kammermeyer, “Membrane in Separations,” Techniques of Chemistry Series, Vol. VII, John Wiley & Sons, New York, N. Y., 1975.
U. Merten, Ed., “Desalination by Reverse Osmosis,” MIT Press, Cambridge, MA., 1966.
F. F. Hartline, Science, 206, 41 (1979).
R. C. Binning and F. E. James, Petr. Refiner, 39, 214 (1958).
E. G. Heisler, A. S. Hunter, J. Sciliano, and R. M. Treadway, Science, 124, 77 (1956).
P. Aptel, N. Challord, J. Cuny, and J. Neel, J. Membr. Sci., 1, 271 (1976).
J. G. Sikonia and F. P. McCandles, J. Membr. Sci., 4, 229 (1978).
I. Cabasso, J. Jagur-Grodzinski, and D. Vofsi, J. Appl. Polym. Sci., 18, 2117 (1974).
P. Aptel, J. Cuny, J. Jozefowicz, G. Morel, and J. Neel, J. Appl. Polym. Sci., 16, 1061 (1972).
P. Aptel, J. Cuny, J. Jozefowicz, G. Morel, and J. Neel, J. Appl. Polym. Sci., 18, 351 (1974).
P. Aptel, J. Cuny, J. Jozefowicz, G. Morel, and J. Neel, J. Appl. Polym. Sci., 18, 365 (1974).
S. Yoshimasu, H. Nomura, K. Komiya, J. Terada, T. Okano, and I. Shinohara, Nihon Kagaku Kaishi, 1785 (1980).
T. Itoh, Y. Ohkawa, K. Ishihara, and I. Shinohara, Polym. J., 15, 827 (1983).
F. P. McCandless, Ind. Eng. Chem. Process Design, Develop., 12, 354 (1973).
T. Suzuki and T. Kotaka, Macromolecules, 13, 1495 (1980).
T. Suzuki and T. Kotaka, Polym. J., 15, 15 (1983).
T. Suzuki, H. Chihara, and T. Kotaka, Polym. J., 16, 129 (1984).
H. Tanisugi, H. Ohnuma, and T. Kotaka, Polym. J., 16, 633 (1984).
E. P. Goldberg, J. Polym. Sci., C, 4, 707 (1964).
H. J. Harwood and W. M. Richey, Polym. Lett., 2, 601 (1964).
H. Adachi, S. Nishi, and T. Kotaka, Polym. J., 14, 985 (1982).
P. E. Rouse, J. Am. Chem. Soc., 69, 1068 (1957).
D. W. McCall, J. Polym. Sci., 26, 151 (1957).
E. W. Washburn, Ed., “International Critical Tables of Numerical Data, Physics, Chemistry, and Technology,” Vol. III, McGraw-Hill, New York, N. Y., 1928.
J. Crank and G. S. Park, Eds., “Diffusion in Polymers,” Academic Press, London and New York, 1968.
S. Krause, “Block and Graft Copolymers,” J. J. Burke and V. Weiss, Eds., Syracuse Univ. Press, Ithaca, N. Y., 1973, pp 143—155.
A. Michaels, W. Vieth, and J. J. Barrie, J. Appl. Phys., 34, 13 (1963).
H. B. Hopfenberg and V. T. Stannett, “The Physics of Glassy Polymers,” R. N. Haward, Ed., Appl. Sci. Publishers, London, 1973, Chapter 9.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Tanisugi, H., Kotaka, T. Liquid Transport through Mosaic Membranes of Hydrophobic–Hydrophilic Microdomains: Pervaporation of Water and Ethanol through Bisphenol-A Polycarbonate–Polyoxyethylene Multiblock Copolymers. Polym J 16, 909–918 (1984). https://doi.org/10.1295/polymj.16.909
Issue date:
DOI: https://doi.org/10.1295/polymj.16.909