Abstract
The interaction of moisture with nylon 6 was investigated using an FT-IR spectroscopy over a near-infrared range of wavenumbers from 4500 to 8000 cm−1 to cover the first overtones of (2vCH) and (2vNH) as well as the water sensitive 5100 and 6900 cm−1 bands, a combination of (δOH)+(vasOH) and a combination of (vsOH)+(vasOH), respectively. Two types of differential procedures were performed to separate the contribution of the water sensitive bands from the entire spectrum: i.e., subtracting the spectrum of the test specimen conditioned at dryness of 0% relative humidity from that conditioned at a given relative humidity of x% (procedure A) or the spectrum for x% from that for (x+Δx)% (procedure B), both as functions of the given relative humidity of x%. From the areas of the water sensitive bands thus separated, the moisture sorption isotherm could be composed in fairly good agreement with that obtained by a gravimetric method. The 6900 cm−1 band of bulk water as well as those in the differential spectra, were decomposed into three components of a Lorentzian function, sub-band I, I-II, and II in the order of descending wavenumber. They were attributed to three kinds of water species differing in the degree of hydrogen-bonding covering singly to doubly hydrogen-bonded water (ice-like water) species. It was found that the water species, which more strongly interact with each other, also more strongly interact with the water accessible sites of nylon 6 to form fewer number of layers of adsorption in the sense of B.E.T.’s multilayer adsorption or the core portion of water cluster in the sense of Hill’s multimolecular adsorption. Semi-quantitative comparison was made between the characterization of the sorbed water by the B.E.T.’s multilayer adsorption and that by the present FT-IR spectroscopy.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
M. Miyagawa, K. Kohata, A. Takaoka, and H. Kawai, J. Soc. Fiber Sci. Tech., Jpn., 43, 57 (1987).
S. Brunauer, P. H. Emmett, and F. Teller, J. Am. Chem. Soc., 60, 309 (1938).
S. A. Shorter, J. Text. Inst., 15, T328 (1924).
T. Hill, J. Chem. Phys., 14, 263 (1946).
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).
K. Hoshino and K. Yumoto, Nippon Kagaku Zasshi, 70, 104 (1949).
H. B. Bull, J. Am. Chem. Soc., 66, 1499 (1944).
J. W. Rowen and R. L. Blaine, Ind. Eng. Chem., 39, 1659 (1947).
J. W. Rowen and R. Simha, J. Phys. Colloid Chem., 53, 921 (1949).
E. A. Hutton and J. Garside, J. Text. Inst., 40, T161 (1949).
R. Jeffries, J. Text. Inst., 51, T393 (1960).
R. Jeffries, J. Text. Inst., 51, T399 (1960).
R. Jeffries, J. Text. Inst., 51, T441 (1960).
A. Takizawa, Kolloid-Z. Z.-Polym., 222, 141 (1968).
A. Takizawa, Kolloid-Z. Z.-Polym., 222, 143 (1968).
V. Fornes and J. Chaussidon, J. Chem. Phys., 82, 4667 (1978).
W. C. McCabe, S. Subramanian, and H. F. Fisher, J. Chem. Phys., 74, 4360 (1970).
I. D. Kuntz and W. Kauzmann, Adv. Protein Chem., 28, 239 (1974).
D. S. Trifan and J. F. Terenzi, J. Polym. Sci., 28, 443 (1958).
Y. Kinoshita, Macromol. Chem., 33, 1 (1959).
U. Buontempo, G. Careri, and P. Fasella, Biopolymers, 11, 519 (1972).
E. Bessler and G. Bier, Macromol. Chem., 122, 30 (1969).
R. W. Seymour and S. L. Cooper, Macromolecules, 6, 48 (1973).
W. J. MacKnight and M. Yang, J. Polym. Sci., Polym. Symp., 42, 817 (1973).
N. S. Schneider, C. P. S. Sung, R. W. Matton, and J. L. Illinger, Macromolecules, 8, 62 (1975).
C. S. P. Sung and N. S. Schneider, Macromolecules, 8, 68 (1975).
L. R. Schroeder and S. L. Cooper, J. Appl. Phys., 47, 4310 (1976).
C. S. P. Sung and N. S. Schneider, Macromolecules, 10, 452 (1977).
G. A. Scenich and W. J. MacKnight, Macromolecules, 13, 106 (1980).
D. Garcia and H. W. Starkweather, Jr., J. Polym. Sci., Polym. Phys. Ed., 23, 537 (1985).
J. W. Ellis and J. Bath, J. Chem. Phys., 6, 723 (1938).
J. Jakes and S. Krimm, Spectrochim. Acta, A, 24a, 35 (1971).
W. H. Moore and S. Krimm, Biopolymers, 15, 2439 (1976).
D. J. Skrovanek, S. E. Howe, P. C. Painter, and M. M. Coleman, Macromolecules, 18, 1676 (1985).
D. Eisenberg and W. Kauzmann, “The Structure and Properties of Water,” Oxford Univ. Press, New York, N. Y., 1969.
W. F. Walrafen, “Water,” Vol. 1, the Physics and Physical Chemistry of Water, F. Franks Ed., Plenum Press, New York, N. Y., 1972, Chapter 5.
W. F. Murphy and H. J. Bernstein, J. Phys. Chem., 76, 1147 (1972).
H. Yamatera, B. Fitzpatrick, and G. Gordon, J. Mol. Spectrosc., 14, 268 (1964).
I. M. Klotz, J. Colloid Interface Sci., 27, 804 (1968).
W. C. McCabe and H. F. Fisher, J. Phys. Chem., 74, 2990 (1970).
E. Greinacher, W. Lüttke, and R. Mecke, Z. Elektrochem., 59, 23 (1955).
K. T. Hecht and D. L. Wood, Proc. R. Soc. (London), 235, 174 (1956).
D. K. Ramsden, F. Wood, and G. King, J. Appl. Polym. Sci., 10, 1191 (1966).
I. D. Kuntz, J. Am. Chem. Soc., 94, 8568 (1972).
H. Kusanagi and S. Yukawa, Polym. Prepr., Jpn., 33, 748 (1984).
H. Kusanagi and S. Yukawa, Polym. Prepr., Jpn., 33, 2807 (1984).
H. Kusanagi and S. Yukawa, Polym. Prepr., Jpn., 34, 2117 (1985).
H. Kusanagi and S. Yukawa, Polym. Prepr., Jpn., 34, 2121 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Fukuda, M., Miyagawa, M., Kawai, H. et al. Fundamental Studies on the Interactions between Moisture and Textiles V. FT-IR Study on the Moisture Sorption Isotherm of Nylon 6. Polym J 19, 785–804 (1987). https://doi.org/10.1295/polymj.19.785
Issue date:
DOI: https://doi.org/10.1295/polymj.19.785