Abstract
An attempt was made to explain the dissolving behavior of natural celluloses in aq. alkali solution in terms of super-molecular structure. Cellulose samples with crystal form of cellulose I having the viscosity-average molecular weight of ca. 8×104 and having various solubilities were prepared by applying the methods of so-called steam-explosion treatment and acid-hydrolysis to soft wood pulp and cotton linter. Their solubility towards aq. NaOH solution proved to be governed by the degree of break-down of O3—H···O5′ intramolecular hydrogen bond χam(C3) as previously demonstrated for regenerated celluloses. χam(C6) expressing in part the degree of break-down of O2—H···O6′ intramolecular hydrogen bond was shown to be also closely correlated with the solubility of the cellulose. In addition to χam(C3) and χam(C6), several other super-molecular structural parameters estimated from the infrared spectra of the natural cellulose samples were found to be correlated with solubility and those parameters might represent wide variation of conformation caused by the break-down of intramolecular hydrogen bonds.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
E. Parnell and Longmans, “Life and Labours of John Mercer,” Green & Co., London, 1886 (through ref 6).
H. Sobue and N. Migita, Ed., “Cellulose Handbook (in Japanese),” Asakura-Shoten, Tokyo, 1958.
H. Staudinger and R. Mohr, J. Pract. Chem., 158, 233 (1941).
H. Mark, J. Phys. Chem., 44, 764 (1940).
P. Hermans, J. Phys. Chem., 45, 827 (1941).
E. Ott and M. Spurlin, Ed., “Cellulose and Cellulose Derivatives,” Vol. II., 2nd ed., Interscience Publishers, New York, 1954.
K. Kowsaka, K. Okajima, and K. Kamide, to be published, in Polym. Int.
K. Kowsaka, K. Okajima, and K. Kamide, to be published.
K. Kamide, K. Okajima, T. Matsui, and K. Kowsaka, Polym. J., 16, 857 (1984).
H. Sobue, H. Kiessig, and K. Hess, Z. Phys. Chem., B34, 309 (1939).
H. Maeda, H. Kawada, and T. Kawai, Makromol. Chem., 131, 139 (1970).
K. Kamide, K. Okajima, K. Kowsaka, and T. Matsui, Polym. J., 17, 701 (1985).
K. Kamide, K. Okajima, and K. Kowsaka, Polym. J., 17, 707 (1985).
T. Yamashiki, K. Kamide, K. Okajima, K. Kowsaka, T. Matsui, and H. Fukase, Polym. J., 20, 447 (1988).
T. Yamashiki, T. Matsui, M. Saitoh, K. Okajima, K. Kamide, and T. Sawada, Br. Polym. J., 22, 73 (1990).
T. Yamashiki, T. Matsui, M. Saitoh, K. Okajima, K. Kamide, and T. Sawada, Br. Polym. J., 22, 121 (1990).
T. Yamashiki, T. Matsui, M. Saitoh, Y. Matsuda, K. Okajima, K. Kamide, and T. Sawada, Br. Polym. J., 22, 201 (1990).
K. Kamide and K. Okajima, US patent 4,634,470 (1987).
K. Kamide, K. Okajima, and K. Yasuda, submitted to Cellulose Chem. Technol.
W. Brown and R. Wikström, Eur. Polym. J., 1, 1 (1966).
L. Segal, J. Creely, A. Martin, and C. Conrad, Jr., Text. Res. J., 29, 786 (1959).
K. Kamide, K. Okajima, and T. Matsui, unpublished results.
S. Manabe, M. Iwata, and K. Kamide, Polym. J., 18, 1 (1986).
A. Stipanovic and A. Sarko, Macromolecules, 9, 851 (1976).
K. Kamide, K. Yasuda, T. Matsui, K. Okajima, and T. Yamashiki, Cellulose Chem. Technol., 24, 23 (1990).
M. Tsuboi, J. Polym. Sci., 28, 159 (1957).
M. Nelson and R. O’Connor, J. Appl. Polym. Sci., 8, 1325 (1964).
M. Nelson, T. Robert, and R. O’Connor, J. Appl. Polym. Sci., 8, 1311 (1964).
H. Higgins, C. Stewart, and K. Harrington, J. Polym. Sci., 51, 59 (1961).
J. Hayashi, M. Sueoka, and T. Watanabe, Nippon Kagaku Kaishi, 7, 1320 (1974).
A. McKenzie and H. Higgins, Svensk Paperstidn, 61, 593 (1958).
W. Earl and D. VanderHart, Macromolecules, 14, 570 (1981).
F. Horii, A. Hirai, and R. Kitamaru, Polym. Bull., 8, 163 (1982).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kamide, K., Okajima, K. & Kowsaka, K. Dissolution of Natural Cellulose into Aqueous Alkali Solution: Role of Super-Molecular Structure of Cellulose. Polym J 24, 71–86 (1992). https://doi.org/10.1295/polymj.24.71
Issue date:
DOI: https://doi.org/10.1295/polymj.24.71
Keywords
This article is cited by
-
High consistency enzymatic pretreatment of eucalyptus and softwood kraft fibres for regenerated fibre products
Cellulose (2023)
-
Cellulose hydrogen bond detection using terahertz time-domain spectroscopy to indicate deterioration of oil–paper insulation
Cellulose (2023)
-
Superbase-based protic ionic liquids for cellulose filament spinning
Cellulose (2021)
-
In vivo decomposition of 13C-labeled cellulose in the mouse
Cellulose (2020)
-
All-cellulose composites via short-fiber dispersion approach using NaOH–water solvent
Cellulose (2019)