Abstract
The X-ray photoelectron spectra (XPS) of polymers [(CH2–CHR)n (R = OH, COOH, and OCOCH3) and (CH2–C(CH3)COOCH3)n] were simulated by an ab initio MO method using model molecules of [H–(CH2–CHR)3–H (R = OH, COOH, and OCOCH3) and H–(CH2–C(CH3)COOCH3)2–H], respectively. The calculated Al-Kα photoelectron spectra were obtained using Gaussian functions of a fixed linewidth of 2.1 and 1.3 eV for core O1s and C1s energy levels, respectively, and given using Gaussian functions of a fixed approximate linewidth (0.15Ek) for valence energy levels. Ek=E′k−(EDKT+WD), where E′k is the eigenvalue of each MO and (EDKT+WD) is an approximate shift in the energy scale to account for sum of the difference due to the Koopmans’ theorem and work function and other energy effects. We assumed that the sum corresponds to the shift we must apply before we can compare the calculated spectrum for the single model molecule with the observed spectrum for the solid. The theoretical spectra without considering the contraction factor in the energy scale showed fairly good agreement with the spectra of polymers as observed, although the shift values were used as 10, 26.5, and 21.5 eV for valence, core O1s and C1s core energy levels of the four polymers, respectively.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
J. J. Pireaux, J. Riga, R. Caudano, and J. J. Verbist, Physica Scripta, 16, 329 (1977).
G. Beamson and D. Briggs, “High Resolution XPS of Organic Polymers. The Scienta ESCA 3000 Database,” Wiely, Chichester, 1992.
A. Naves de Brito, N. Correia, S. Svensson, and H. Agren, J. Chem. Phys., 95, 2965 (1991).
A. Naves de Brito, M. P. Keane, N. Correia, U. Gelius, and B. Lindberg, J. Surf. Interface Anal., 17, 94 (1991).
J. J. Pireaux, S. Svensson, E. Basilier, P. A. Malmqvist, U. Gelius, R. Caudano, and K. Siegbahn, Phys. Rev. A, 14, 2133 (1976).
J. J. Pireaux and R. Caudano, Phys. Rev. B, 15, 2242 (1977).
C. B. Duke and A. Paton, in “Conductive Polymers”, B. Seymour, Ed., Plenum, New York, N.Y., 1981, p 155.
K. Seki, in “Optical Techniques to Characterize Polymer Systems”, H. Baessler, Ed., Elsevier, Amsterdam, 1989, p 115.
C. H. Xian, K. Seki, H. Inokuchi, S. Hashimoto, N. Ueno, and K. Sugita, Bull. Chem. Soc. Jpn., 58, 890 (1985).
P. Boulanger, C. Magermans, J. J. Verbist, J. Delhalle, and D. B. Urch, Macromolecules, 24, 2757 (1991).
P. Boulanger, R. Lazzaroni, J. J. Verbist, and J. Delhalle, Chem. Phys. Lett., 129, 275 (1986).
S. R. Cain, Chem. Phys. Lett., 143, 361 (1988).
P. Boulanger, J. Riga, J. J. Verbist, and J. Delhalle, Macromolecules, 22, 173 (1989).
J. Delhalle, S. Delhalle, and J. Riga, J. Chem. Soc., Faraday Trans., 2, 503 (1987).
K. Endo, N. Kobayashi, M. Aida, and C. Inoue, J. Phys. Chem. Solids, 54, 887 (1993).
K. Endo, C. Inoue, N. Kobayashi, T. Higashioji, and H. Nakatsuji, Bull. Chem. Soc. Jpn., 66, 3241 (1993).
K. Endo, C. Inoue, N. Kobayashi, and M. Aida, J. Phys. Chem. Solids, 55, 471 (1994).
K. Endo, Y. Kaneda, M. Aida, and D. P. Chong, accepted in J. Phys. Chem. Solids.
M. Aida, Y. Kaneda, N. Kobayashi, K. Endo, and D. P. Chong, Bull. Chem. Soc. Jpn., 67, No. 11 (1994).
K. Endo, C. Inoue, Y. Kaneda, M. Aida, N. Kobayashi, and D. P. Chong, Bull. Chem. Soc. Jpn., 68, No 1 or 2 (1995).
M. S. Dupuis, J. D. Watts, H. G. Villar, and G. J. B. Hurst, HONDO, version 7, Scientific and Engineering Computations Dept. 48B, IBM Corp, New York, 12401, 1978.
J. J. P. Stewart, J. Comp. Chem., 10, 289 (1989).
E. Orti and J. L. Bredas, J. Chem. Phys., 89, 1009 (1988).
J. L. Bredas and T. C. Clarke, J. Chem. Phys., 86, 253 (1987).
J. L. Bredas and T. C. Clarke, Chem. Phys. Lett., 164, 240 (1989), etc.
L. Åsbrink, C. Fridh, and E. Lindholm, Chem. Phys. Lett., 52, 63 (1977).
L. Åsbrink, C. Fridh, and E. Lindholm, Quantum Chemistry Program Exchange, 12, No. 398 (1980).
L. Asbrink, C. Fridh, and E. Lindholm, Chem. Phys. Lett., 52, 69 (1977).
E. Lindholm and L. Åsbrink, “Molecular Orbitals and their Energies, Studied by the Semiempirical HAM Method,” Springer-Verlag of Berlin in 1985.
D. P. Chong, Theoret. Chem. Acta, 51, 55 (1979).
D. P. Chong, J. Mol. Sci., 2, 55 (1982).
D. P. Chong, Can. J. Chem., 63, 2007 (1985).
J. C. Slater, Advan. Quantum Chem., 6, 1 (1972).
U. Gelius and K. Siegbahn, Faraday Discus. Chem. Soc., 54, 257 (1972).
U. Gelius, J. Electron. Spectrosc. Relat. Phenom., 5, 985 (1974).
S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakaki, and H. Takewaki, “Gaussian Basis Sets for Molecular Calculations,” Elsevier, Amsterdam, 1984.
T. H. Dunning, Jr. and P. J. Hay, in “Methods of Electronic Structure Theory,” H. F. Schaefer, III, Ed., Plenum, New York, N.Y., 1977.
J. Delhalle, J. M. Andre, S. Delhalle, J. J. Pireaux, R. Caudano, and J. J. Verbist, J. Chem. Phys., 60, 595 (1974).
L. E. Lyons, J. Chem. Soc., 5001 (1957).
J. J. Pireaux and R. Caudano, Phys. Rev. B, 15, 2242 (1977).
C. B. Duke, in “Photon, Electron and Ion Probes of Polymer Structure and Properties”, ACS Symp. Ser., 162, 113 (1981).
W. R. Salaneck, in “Photon, Electron and Ion Probes of Polymer Structure and Properties,” ACS Symp. Ser., 162, 121 (1981).
V. I. Nefedov, N. P. Sergushin, I. M. Band, and M. B. Trzhaskovskaya, J. Electron. Spectrosc. Relat. Phenom., 2, 383 (1973).
D. P. Chong, Can. J. Chem., 61, 1 (1983).
J. Duffy and D. P. Chong, Org. Mass Spectrom., 28, 321 (1993).
H. Nakatsuji and T. Yonezawa, Chem. Phys. Lett., 87, 462 (1982).
H. Nakatsuji, Chem. Phys., 75, 425 (1983).
H. Nakatsuji, Chem. Phys., 76, 283 (1983).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Inoue, C., Kaneda, Y., Aida, M. et al. Simulation of XPS of Poly(vinyl alcohol), Poly(acrylic acid), Poly(vinyl acetate), and Poly(methyl methacrylate) Polymers by an Ab Initio MO Method Using the Model Molecules. Polym J 27, 300–309 (1995). https://doi.org/10.1295/polymj.27.300
Issue date:
DOI: https://doi.org/10.1295/polymj.27.300
Keywords
This article is cited by
-
Benchmarking density functionals and Gaussian basis sets for calculation of core-electron binding energies in amino acids
Theoretical Chemistry Accounts (2017)
-
Comparative study of Gaussian basis sets for calculation of core electron binding energies in first-row hydrides and glycine
Theoretical Chemistry Accounts (2014)
-
Performance of density functionals for computation of core electron binding energies in first-row hydrides and glycine
Theoretical Chemistry Accounts (2014)