Abstract
Surface relaxation in syndiotactic (st-) and isotactic (it-) poly(methyl methacrylate) (PMMA) films was studied by lateral force microscopy. The αa- and β-relaxation processes were clearly observed even at the surface, permitting us to deduce the form of the dispersion map for the surface relaxation processes. Both relaxation temperatures at the surface were lower than the corresponding ones in the bulk. In addition, the extent to which the peak temperature for the surface relaxation processes fell below that of the bulk strongly depended on the stereoregularity of the films. The differences in the chain conformations between the surface and the bulk, which were more remarkable in the st-PMMA, produced this variation in surface mobility.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
F. Garbassi, M. Morra, and E. Occhiello, in “Polymer Surfaces from Physics to Technology,” John Wiley & Sons, Chichester, 1998.
R. A. L. Jones and R. W. Richards, in “Polymers at Surfaces and Interfaces,” Cambridge University Press, Cambridge, 1999.
J. A. Forrest and R. A. L. Jones, in “Polymer Surfaces, Interfaces and Thin Films,” A. Karim and S. Kumar, Ed., World Scientific, Singapore, 2000.
G. F. Meyers, B. M. DeKoven, and J. T. Seitz, Langmuir, 8, 2330 (1992).
T. Kajiyama, K. Tanaka, I. Ohki, S. R. Ge, J. S. Yoon, and A. Takahara, Macromolecules, 27, 7932 (1994).
K. Tanaka, A. Taura, S. R. Ge, A. Takahara, and T. Kajiyama, Macromolecules, 29, 3040 (1996).
K. Tanaka, A. Takahara, and T. Kajiyama, Macromolecules, 33, 7588 (2000).
K. Tanaka, K. Hashimoto, T. Kajiyama, and A. Takahara, Langmuir, 19, 6573 (2003).
A. M. Mayes, Macromolecules, 27, 3114 (1994).
G. B. DeMaggio, W. E. Frieze, D. W. Gidley, M. Zhu, H. A. Hristov, and A. F. Yee, Phys. Rev. Lett., 78, 1524 (1997).
Y. C. Jean, R. Zhang, H. Cao, J. P. Yuan, C. M. Huang, B. Nielsen, and P. Asoka-Kumar, Phys. Rev. B, 56, R8459 (1997).
Y. M. Boiko and R. E. Prud’homme, J. Polym. Sci., Part B: Polym. Phys., 36, 567 (1998).
G. Guérin, F. Mauger, and R. E. Prud’homme, Polymer, 44, 7477 (2003).
Y. M. Boiko and R. E. Prud’homme, J. Macromol. Sci. Part B, 44, 413 (2005).
A. D. Schwab, D. M. G. Agra, J. H. Kim, S. Kumar, and A. Dhinojwala, Macromolecules, 33, 4903 (2000).
D. M. G. Agra, A. D. Schwab, J. H. Kim, S. Kumar, and A. Dhinojwala, Europhys. Lett., 51, 655 (2000).
A. D. Schwab and A. Dhinojwala, Phys. Rev. E, 67, 021802 (2003).
V. Zaporojtchenko, T. Strunskus, J. Erichsen, and F. Faupel, Macromolecules, 34, 1125 (2001).
J. Erichsen, J. Kanzow, U. Schürmann, K. Dolgner, K. Günther-Schade, T. Strunskus, V. Zaporojtchenko, and F. Faupel, Macromolecules, 37 1831 (2004).
T. Kerle, Z. Lin, H. C. Kim, and T. P. Russell, Macromolecules, 34, 3484 (2001).
D. Kawaguchi, K. Tanaka, A. Takahara, and T. Kajiyama, Macromolecules, 34, 6164 (2001).
D. Kawaguchi, K. Tanaka, T. Kajiyama, A. Takahara, and S. Tasaki, Macromolecules, 36, 1235 (2003).
W. E. Wallace, D. A. Fischer, K. Efimenko, W. L. Wu, and J. Genzer, Macromolecules, 34, 5081 (2001).
W. L. Wu, S. Sambasivan, C. Y. Wang, W. E. Wallace, J. Genzer, and D. A. Fischer, Eur. Phys. J. E, 12, 127 (2003).
V. N. Bliznyuk, H. E. Assender, and G. A. D. Briggs, Macromolecules, 35, 6613 (2002).
H. Fischer, Macromolecules, 35, 3592 (2002).
H. Fischer, Macromolecules, 38, 844 (2005).
J. H. Teichroeb and J. A. Forrest, Phys. Rev. Lett., 91, 016104 (2003).
J. S. Sharp, J. H. Teichroeb, and J. A. Forrest, Eur. Phys. J. E, 15, 473 (2004).
Z. Fakhraai and J. A. Forrest, Phys. Rev. Lett., 95, 025701 (2005).
R. Weber, I. Grotkopp, J. Stettner, M. Tolan, and W. Press, Macromolecules, 36, 9100 (2003).
T. Sasaki, A. Shimizu, T. H. Mourey, C. T. Thurau, and M. D. Ediger, J. Chem. Phys., 119, 8730 (2003).
F. L. Pratt, T. Lancaster, M. L. Brooks, S. J. Blundell, T. Prokscha, E. Morenzoni, A. Suter, H. Luetkens, R. Khasanov, R. Scheuermann, U. Zimmermann, K. Shinotsuka, and H. E. Assender, Phys. Rev. B, 72, 121401 (2005).
G. Reiter, Europhys. Lett., 23, 579 (1993).
G. Reiter, Macromolecules, 27, 3046 (1994).
J. L. Keddie, R. A. L. Jones, and R. A. Cory, Europhys. Lett., 27, 59 (1994).
S. Kawana and R. A. L. Jones, Phys. Rev. E, 63, 021501 (2001).
S. Kawana and R. A. L. Jones, Eur. Phys. J. E, 10, 223 (2003).
J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens, and J. R. Dutcher, Phys. Rev. Lett., 77, 2002 (1996).
J. A. Forrest, K. Dalnoki-Veress, and J. R. Dutcher, Phys. Rev. E, 56, 5705 (1997).
J. A. Forrest and J. Mattsson, Phys. Rev. E, 61, R53 (2000).
J. S. Sharp, J. H. Teichroeb, and J. A. Forrest, Phys. Rev. Lett., 91, 235701 (2003).
K. L. Ngai, A. K. Rizos, and D. J. Plazek, J. Non-Cryst. Solids, 235, 435 (1998).
K. L. Ngai, Eur. Phys. J. E, 8, 225 (2002).
K. L. Ngai, Eur. Phys. J. E, 12, 93 (2003).
K. L. Ngai, T. R. Gopalakrishnan, and M. Beiner, Polymer, 47, 7222 (2006).
K. L. Ngai, J. Polym. Sci., Part B: Polym. Phys., 44, 2980 (2006).
K. Fukao and Y. Miyamoto, Europhys. Lett., 46, 649 (1999).
K. Fukao and Y. Miyamoto, Phys. Rev. E, 61, 1743 (2000).
K. Fukao and Y. Miyamoto, Phys. Rev. E, 64, 011803 (2001).
D. S. Fryer, P. F. Nealey, and J. J. de Pablo, Macromolecules, 33, 6439 (2000).
J. A. Torres, P. F. Nealey, and J. J. de Pablo, Phys. Rev. Lett., 85, 3221 (2000).
K. Yoshimoto, T. S. Jain, P. F. Nealey, and J. J. de Pablo, J. Chem. Phys., 122, 144712 (2005).
O. K. C. Tsui and H. F. Zhang, Macromolecules, 34, 9139 (2001).
F. Xie, H. F. Zhang, F. K. Lee, B. Du, O. K. C. Tsui, Y. Yokoe, K. Tanaka, A. Takahara, T. Kajiyama, and T. He, Macromolecules, 35, 1491 (2002).
C. J. Ellison, S. D. Kim, D. B. Hall, and J. M. Torkelson, Eur. Phys. J. E, 8, 155 (2002).
C. J. Ellison and J. M. Torkelson, Nat. Mater., 2, 695 (2003).
C. J. Ellison, M. K. Mundra, and J. M. Torkelson, Macromolecules, 38, 1767 (2005).
T. Kanaya, T. Miyazaki, H. Watanabe, K. Nishida, H. Yamano, S. Tasaki, and D. B. Bucknall, Polymer, 44, 3769 (2003).
T. Miyazaki, K. Nishida, and T. Kanaya, Phys. Rev. E, 69, 022801 (2004).
T. Miyazaki, K. Nishida, and T. Kanaya, Phys. Rev. E, 69, 061803 (2004).
R. Inoue, T. Kanaya, T. Miyazaki, K. Nishida, I. Tsukushi, and K. Shibata, Mater. Sci. Eng., A, 442, 367 (2006).
N. Tomczak, R. A. L. Vallée, E. M. H. P. van Dijk, L. Kuipers, N. F. van Hulst, and G. J. Vansco, J. Am. Chem. Soc., 126, 4748 (2004).
K. Tanaka, Y. Tateishi, and T. Nagamura, Macromolecules, 37, 8188 (2004).
K. Akabori, K. Tanaka, T. Nagamura, A. Takahara, and T. Kajiyama, Macromolecules, 38, 9735 (2005).
M. Hamdorf and D. Johannsmann, J. Chem. Phys., 112, 4262 (2000).
S. Ge, W. Zhang, M. Rafailovich, J. Sokolov, C. Buenviaje, R. Buckmaster, and R. M. Overney, Phys. Rev. Lett., 85, 2340 (2000).
Y. Pu, S. Ge, M. Rafailovich, J. Sokolov, Y. Duan, E. Pearce, V. Zaitsev, and S. A. Schwarz, Langmuir, 17, 5865 (2001).
Y. Pu, M. H. Rafailovich, J. Sokolov, D. Gersappe, T. Peterson, W. L. Wu, and S. A. Schwarz, Phys. Rev. Lett., 87, 206101 (2001).
R. Weber, K. M. Zimmermann, M. Tolan, J. Stettner, W. Press, O. H. Seeck, J. Erichsen, V. Zaporojtchenko, T. Strunskus, and F. Faupel, Phys. Rev. E, 64, 061508 (2001).
M. Y. Efremov, J. T. Warren, E. A. Olson, M. Zhang, A. T. Kwan, and L. H. Allen, Macromolecules, 35, 1481 (2002).
M. Y. Efremov, E. A. Olson, M. Zhang, Z. Zhang, and L. H. Allen, Phys. Rev. Lett., 91, 085703 (2003).
M. Y. Efremov, E. A. Olson, M. Zhang, Z. Zhang, and L. H. Allen, Macromolecules, 37, 4607 (2004).
N. G. McCrum, B. E. Read, and G. Williams, “Anelastic and Dielectric Effects in Polymeric Solids,” Dover, New York, 1967.
J. L. Keddie, R. A. L. Jones, and R. A. Cory, Faraday Discuss., 98, 219 (1994).
O. Prucker, S. Christian, H. Bock, J. Rühe, C. W. Frank, and W. Knoll, Macromol. Chem. Phys., 199, 1435 (1998).
K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, Phys. Rev. E, 64, 051807 (2001).
K. Fukao, Eur. Phys. J. E, 12, 119 (2003).
K. Fukao and A. Sakamoto, Phys. Rev. E, 71, 041803 (2005).
K. Fukao, A. Sakamoto, Y. Kubota, and Y. Saruyama, J. Non-Cryst. Solids, 351, 2678 (2005).
L. Hartmann, W. Gorbatschow, J. Hauwede, and F. Kremer, Eur. Phys. J. E, 8, 145 (2002).
J. S. Sharp and J. A. Forrest, Phys. Rev. E, 67, 031805 (2003).
C. B. Roth and J. R. Dutcher, Eur. Phys. J. E, 12, s103 (2003).
M. Wübbenhorst, C. A. Murray, and J. R. Dutcher, Eur. Phys. J. E, 12, s109 (2003).
C. B. Roth, A. Pound, S. W. Kamp, C. A. Murray, and J. R. Dutcher, Eur. Phys. J. E, 20, 441 (2006).
E. K. Lin, W. L. Wu, and S. K. Satija, Macromolecules, 30, 7224 (1997).
E. K. Lin, R. Kolb, S. K. Satija, and W. L. Wu, Macromolecules, 32, 3753 (1999).
Y. Grohens, M. Brogly, C. Labbe, M. O. David, and J. Schultz, Langmuir, 14, 2929 (1998).
Y. Grohens, L. Hamon, G. Reiter, A. Soldera, and Y. Holl, Eur. Phys. J. E, 8, 217 (2002).
C. E. Porter and F. D. Blum, Macromolecules, 33, 7016 (2000).
B. Zhang and F. D. Blum, Macromolecules, 36, 8522 (2003).
R. D. Priestley, C. J. Ellison, L. J. Broadbelt, and J. M. Torkelson, Science, 309, 456 (2005).
Y. Grohens, M. Brogly, C. Labbe, and J. Schultz . Eur. Polym. J., 33, 691 (1997).
O. N. Tretinnikov, Langmuir, 13, 2988 (1997).
D. Atack and D. Tabor, Proc. R. Soc., A246, 539 (1958).
K. Minato and T. Takemura, Jpn. J. Appl. Phys., 6, 719 (1967).
T. Kajiyama, K. Tanaka, and A. Takahara, Macromolecules, 30, 280 (1997).
Since the temperature at which the lateral force was maximized, was dependent on the measurement frequency, the temperature dependence of the relaxation time could be determined. Fitting the data using the Vogel-Fulcher equation gave a rough estimate for Tgs of 325 K.
The bulk β-process for it-PMMA could not be clearly seen at the frequency of 70 Hz because of overlap with the αa-process. However, when the dynamic mechanical analysis was made at a lower frequency, bulk β-process was clearly observed. Thus, we extrapolated the β-relaxation temperature based on the Arrhenius equation.
K. Schmidt-Rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, and H. W. Spiess, Macromolecules, 27, 4733 (1994).
A. S. Kulik, H. W. Beckham, K. Schmidt-Rohr, D. Radloff, U. Pawelzik, C. Boeffel, and H. W. Spiess, Macromolecules, 27, 4746 (1994).
S. C. Kuebler, D. J. Schaefer, C. Boeffel, U. Pawelzik, and H. W. Spiess, Macromolecules, 30, 6597 (1997).
J. L. Koenig, in “Spectroscopy of Polymers,” Elsevier, New York, 1999.
O. N. Tretinnikov and K. Ohta, Macromolecules, 35, 7343 (2002).
A. Soldera and Y. Grohens, Macromolecules, 35, 722 (2002).
H. Nagai, J. Appl. Polym. Sci., 7, 1697 (1963).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Fujii, Y., Akabori, Ki., Tanaka, K. et al. Chain Conformation Effects on Molecular Motions at the Surface of Poly(methyl methacrylate) Films. Polym J 39, 928–934 (2007). https://doi.org/10.1295/polymj.PJ2006270
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1295/polymj.PJ2006270
Keywords
This article is cited by
-
Chain movements of a molecularly flat PMMA substrate surface prepared by thermal imprinting with mica and isolated PMMA chains deposited on the PMMA substrate observed by AFM around the bulk Tg
Polymer Journal (2022)
-
Thermal stabilities of a molecularly stepped PMMA substrate prepared by thermal nanoimprinting and isolated PMMA chains deposited on it evaluated by high-temperature atomic force microscopy
Polymer Journal (2021)
-
Effect of tetrahydrofuran on poly(methyl methacrylate) and silica in the interfacial regions of polymer nanocomposites
Polymer Journal (2020)
-
Construction of hydrophilic surfaces with poly(vinyl ether)s and their interfacial properties in water
Polymer Journal (2019)
-
Metastable interface formation in isotactic poly(methyl methacrylate)/alumina nanoparticle mixtures
Polymer Journal (2018)