Abstract
A peptide–diacetylene hybrid (PDH), in which 5,7-dodecadiynedioic acid was conjugated to the amphiphilic penta-peptide Leu-Lys-Leu-Lys-Leu, which can form β-sheets on both ends of the diacetylene moiety, was prepared through solid-phase peptide synthesis using fluorenylmethoxycarbonyl chemistry. Spreading experiments and spectroscopic observations showed that the PDH formed a stable Langmuir monolayer, primarily in the parallel β-sheet conformation at the air–water interface. When the PDH monolayer was exposed to ultraviolet radiation and a single-layer Langmuir–Blodgett (LB) film of the treated monolayer was deposited on a CaF2 plate, the polymerization proceeded successfully and provided highly π-conjugated, blue-colored polydiacetylenes with absorption maxima at 653 and 640 nm, respectively. The polymerized PDH LB film displayed almost completely reversible thermochromism between blue and red (less conjugated) states upon heating and cooling.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Cantov, H.- J. Polydiacetylenes, Vol. 63Springer-Verlag, Berlin, 1984.
Fouassier, J. P., Tieke, B. & Wegner, G. Photochemistry of the polymerization of diacetylenes in multilayers. Isr. J. Chem. 18, 227–232 (1979).
Tieke, B., Lieser, G. & Wegner, G. Polymerization of diacetylenes in multilayers. J. Polym. Sci., Part A: Polym. Chem. 17, 1631–1644 (1979).
Huo, Q., Wang, S. P., Pisseloup, A., Verma, D. & Leblanc, R. M. Unusual chromatic properties observed from polymerized dipeptide diacetylenes. Chem. Commun. 1601–1602 (1999).
Charych, D. H., Nagy, J. O., Spevak, W. & Bednarski, M. D. Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science 261, 585–588 (1993).
Reichert, A., Nagy, J. O., Spevak, W. & Charych, D. H. Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus. J. Am. Chem. Soc. 117, 829–830 (1995).
Jelinek, R. Colorimetric sensors for drug discovery and biomedical diagnostics. Dev. Res. 50, 497–501 (2000).
Kolusheva, S., Kafri, R., Katz, M. & Jelinek, R. Cation-selective color sensors composed of ionophore-phospholipid-polydiacetylene mixed vesicles. J. Am. Chem. Soc. 122, 776–780 (2000).
Song, J., Cisar, J. S. & Bertozzi, C. R. Functional self-assembling bolaamphiphilic polydiacetylenes as colorimetric sensor scaffolds. J. Am. Chem. Soc. 126, 8459–8465 (2004).
Kuo, T. & O’Brien, D. F. Synthesis and properties of diacetylenic glutamate lipid monomer and polymer: thermochromic polydiacetylene free-standing films. Macromolecules 23, 3225–3230 (1990).
Niwa, M., Shibahara, S. & Higashi, N. Diacetylenic monolayers containing a boronic acid moiety form a chemically and thermally stable poly(diacetylene) film on water. J. Mater. Chem. 10, 2647–2651 (2000).
Bekele, H., Fendler, J. H. & Kelly, J. W. Self-assembling peptidomimetic monolayer nucleates oriented CdS nanocrystals. J. Am. Chem. Soc. 121, 7266–7267 (1999).
Zhang, S., Holmes, T., Lockshin, C. & Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl Acad. Sci. USA. 90, 3334–3338 (1993).
Takahashi, Y., Ueno, A. & Mihara, H. Design of a peptide undergoing α-β structural transition and amyloid fibrillogenesis by the introduction of a hydrophobic defect. Chem. Eur. J. 4, 2475–2484 (1998).
Lashuel, H. A., LaBrenz, S. R., Woo, L., Serpell, L. C. & Kelly, J. W. Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly: implications for amyloid fibril formation and materials science. J. Am. Chem. Soc. 122, 5262–5277 (2000).
Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).
Murasato, K., Matsuura, K. & Kimizuka, N. Self-assembly of nanofiber with uniform width from wheel-type trigonal-β-sheet forming peptide. Biomacromolecules 9, 913–918 (2008).
Koga, T., Matsuoka, M. & Higashi, N. Structural control of self-assembled nanofibers by artificial β-sheet peptides composed of D- or L-isomer. J. Am. Chem. Soc. 127, 17596–17597 (2005).
Koga, T., Higuchi, M., Kinoshita, T. & Higashi, N. Controlled self-assembly of amphiphilicoligopeptides into shape-specific nanoarchitectures. Chem. Eur. J. 12, 1360–1367 (2006).
Koga, T., Kitamura, K. & Higashi, N. Enzymatically triggered self-assembly of poly(ethylene glyco)-attached oligopeptides into well-organized nanofibers. Chem. Commun 4897–4898 (2006).
Kodama, H., Matsumura, S., Yamashita, T. & Mihara, H. Contraction of a protein array on amyloid-like fibrils using co-assembly of designed peptides. Chem. Commun 2876–2877 (2004).
Li, L. & Stupp, S. I. One-dimensional assembly of lipophilic inorganic nanoparticles templated by peptide-based nanofibers with binding functionalities. Angew. Chem. Int. Ed. 44, 1833–1836 (2005).
Koga, T., Murakami, R. & Higashi, N. Surface modification of peptide nanofiber by using antigen-antibody interaction. Trans. Mater. Res. Soc. Jpn. 32, 371–374 (2007).
Jahnk, E., Lieberwirth, I., Severin, N., Rabe, J. P. & Frauenrath, H. Topochemical polymerization in supramolecular polymers of oligopeptide-functionalized diacetylenes. Angew. Chem. Int. Ed. 45, 5383–5386 (2006).
Hsu, L., Cvetanovich, G. L. & Stupp, S. I. Peptide amphiphile nanofibers with conjugated polydiacetylene backbones in their core. J. Am. Chem. Soc. 130, 3892–3899 (2008).
Van den Henvel, M., Löwik, D. W. P. M. & vanHest, J. C. M. Self-assembly and polymerization of diacetylene-containing peptide amphiphiles in aqueous solution. Biomacromolecules 9, 2727–2734 (2008).
Mori, T., Yasutake, S., Inoue, H., Minagawa, K., Tanaka, M., Niidome, T. & Katayama, Y. “Threading” of β-sheet peptides via radical polymerization. Biomacromolecules 8, 318–321 (2007).
Schott, M. in Photophysics of Moleculat Materials. From Single Molecules to Single Crystals (ed. Lanzani, G.) 49–151 (Wiley-VCH, Berlin, 2006).
Miyazawa, T. & Blout, E. R. The infrared spectra of polypeptides in various conformations: amide I and II bands. J. Am. Chem. Soc. 83, 712–719 (1961).
Schott, M. The colors of polydiacetylenes: a commentary. J. Phys. Chem. B 110, 15864–15868 (2006).
Baughman, R. H. & Yee, K. C. Solid-state polymerization of linear and cyclic acetylenes. J. Polym. Sci., Macromol. Rev. 13, 219–239 (1978).
Acknowledgements
This work was supported in part by a grant-in-aid for young scientific research (No. 21750130) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan, and by the Project on ‘Creating Research Center for Advanced Molecular Biochemistry’ from the MEXT.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Koga, T., Taguchi, T. & Higashi, N. β-Sheet peptide-assisted polymerization of diacetylene at the air–water interface and thermochromic property. Polym J 44, 195–199 (2012). https://doi.org/10.1038/pj.2011.105
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2011.105
Keywords
This article is cited by
-
Synthesis of chiral 2(5H)-furanone derivatives with 1,3-butadiyne structure
Research on Chemical Intermediates (2013)


